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Abstract
Accurately identifying the soil map unit component at a specific point-location
within a landscape is critical for implementing sustainable soil management.
Recent developments in smartphone-based technologies for characterizing soil
profiles, coupled with improved numerical soil classification algorithms, have
made it more accessible for non-soil scientists to sample, characterize, and clas-
sify soil profiles. The main objective of this study was to evaluate an operational
soil classification framework for identifying the soil component at a sampling-
location based on the numerical similarity of soil property values between the
sampled soil profile and the soil components mapped in that area. To evaluate
this soil identification framework, we used a subset of the U.S. National Cooper-
ative Soil Survey Soil Characterization Database (NCSS–SCD) as our soil profile
test dataset and theU.S. Soil Survey Geographic (SSURGO) database as our refer-
ence dataset using profile data of soil components in the area surrounding each
test profile. Numerical similarity was tested using soil property data represent-
ing different degrees of generalization, both in terms of generalizing depth-wise
variability (i.e., depth-support) and generalizing across feature space (i.e., soil
properties). Three soil property groups (i.e., Novice, Expert, Expert-Plus) repre-
senting different levels of detail and three types of depth-support (i.e., genetic
horizon, depth intervals, and depth functions) were evaluated. Using a simple set
of soil property inputs (i.e., Novice: soil texture class, rock fragment volume class,
and soil color) resulted in nearly as high identification accuracy (46–53%) as that
achieved with an Expert (48–57%) dataset that includedmore precise determina-
tions (percent sand, silt, clay, and rock fragment volume), and virtually no fur-
ther improvement with the addition of pH and organic matter in the Expert-Plus
dataset (53–60%). This study also showed minimal effect from the type of depth-
support used to represent depth-wise variability. Furthermore, we evaluated
severalmeasures of soil functional similarity (i.e., ecological sites, land capability,
taxonomic distance) which resulted in management relevant accuracies ranging
from 65–89%. These findings support the utility of simple soil observations sam-
pled at fixed depths for soil identification.

Abbreviations: ESD, Ecological Site Descriptions; HWSD, Harmonized World Soil Database; LandPKS, Land Potential Knowledge System; LCC,
Land Capability Classifications; MLA, minimum legible area; NASIS, National Soil Information System database; NCSS–SCD, National Cooperative
Soil Survey Soil Characterization Database; NRCS, Natural Resources Conservation Service; SMU, soil map unit; SSURGO, U.S. Soil Survey
Geographic database; STATSGO, U.S. State Soil Geographic database
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1 INTRODUCTION

Soil taxa (e.g., soil series) are information carriers that
allow land managers to infer a general range of soil behav-
ior in response to management actions and disturbance
effects. Accurate identification of the soil taxa at specific
locations within a landscape is therefore critical for imple-
menting sustainable soil management. Soils are inherently
complex systems that exhibit a high degree of variability,
both in geographic and feature space (i.e., soil property val-
ues), making the identification of a soil taxa at an unsam-
pled location extremely difficult. This is exemplified by
the current suite of class-based soil maps available to end-
users (e.g., SSURGO/STATSGO, HWSD) where individual
soil map units often contain multiple soil taxa (i.e., soil
series/series-phases), commonly referred to as soil map
unit components. However, even at locationswhere a soil’s
properties are known, its correct identification to an exist-
ing soil taxa or series can be challenging.Within a soil map
unit, the management requirements for co-occurring soil
components can be drastically different, resulting in dam-
aging impacts to the soil resource when incorrectly identi-
fied and improperly managed as well as missed opportuni-
ties to increase production or switch tomore profitable pro-
duction systems (Duniway, Bestelmeyer, & Tugel, 2010).
Soil classification systems, such as Soil Taxonomy (Soil

Survey Staff, 1999) and the World Reference Base (IUSS -
WRB, 2015), provide a hierarchical framework for grouping
soils based on our current knowledge of soil genesis and
its effects on land-use potential. While these systems are
highly effective at classifying soils based on a set range of
depth-dependent soil property values and conditions, they
do not provide a means to quantitatively describe differ-
ences between soils (Beaudette, Roudier, & O’Geen, 2013).
The ability to quantitatively describe differences between
soil components may provide a means of correctly identi-
fying the soil component at a sampling location based on a
numerical comparison of soil property values between the
sampled soil profile and the soil components mapped in
that area. Furthermore, the development of a numerical
soil classification system could provide a framework for
non-soil scientists (e.g., citizen scientists) to identify the
soil component at unknown sampling locations, contin-
gent on their ability to accurately measure the soil prop-
erties being compared.
Numerical soil classification encompasses two types

of activities: arranging individual soil profiles in classes
(‘classification’), and assigning an individual profile to
an existing class (‘identification’) (de Gruijter, 1977). Both
types of activities employ numerical methods which typ-
ically involve the calculation of a pair-wise dissimilar-
ity between soil profiles using a feature-space distance
metric (e.g., Euclidean distance). Soil profiles that are

Core Ideas

∙ Evaluates operational modeling framework for
location-based soil identification

∙ Generalized soil inputs produced similar identi-
fication accuracy as detailed inputs

∙ Type of depth-wise soil sampling had minimal
effect on simulated soil identification results

∙ Supports utility of simple soil observations sam-
pled at fixed depths by citizen scientists

similar will be closer in feature-space distance than those
that are less similar (Carré & Jacobson, 2009). Several algo-
rithms for numerical soil classification have been proposed
over the last several decades based on a comparison of: (1)
genetic horizons (Carré & Jacobson, 2009; Rayner, 1966),
(2) standardized depth intervals or depth slices (Beaudette
et al., 2013; Fan et al., 2018; Moore, Russell, & Ward, 1972),
(3) soil property depth functions (e.g., polynomial coef-
ficients) (Moore et al., 1972), and (4) transition matrices
based on the global clustering of horizon samples into a
small number of horizon classes (Little&Ross, 1985;Moore
et al., 1972; Norris & Dale, 1971).
Recently, Beaudette et al. (2013) identified two major

limitations of previous soil classification algorithms: (1)
the lack of a method to account for comparisons between
soil and non-soil material (i.e., deep vs. shallow profiles),
and (2) lack of support for binary, nominal, and ordinal
scale variables. To overcome these limitations, Beaudette
et al. (2013) devised a new numerical soil classification
algorithm, Numerical Comparison (of) Soil Profiles
(NCSP) (‘NCSP’ function from the ‘aqp’ R package), where
the between-profile dissimilarity is evaluated along regular
depth slices (e.g., every slice or every nth slice). The treat-
ment of sample depth as the basis for between-sample
comparisons simplifies the process of comparing and
classifying soils that have varying horizonation (e.g.,
genetic horizons) or that were collected using different
sampling methods (e.g., genetic horizons vs soil depth
intervals). Each slice-wise dissimilarity is calculated using
Gower’s generalized dissimilarity metric (Gower, 1971)
which can accommodate any combination of binary, nom-
inal, ordinal, ratio-scale, or continuous variables. Addi-
tionally, the algorithm accounts for comparisons between
soil and non-soil material (which would result in an unde-
fined dissimilarity) via replacement with the maximum
between-slice dissimilarity from the collection of profiles
being compared. The final between-profile dissimilarity is
calculated by summing the collection of slice-wise dissim-
ilarity matrices (Beaudette et al., 2013). The classification
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output of the NCSP algorithm is influenced by both
the sampling method used to describe the soil’s vertical
variability (i.e., depth-support: genetic horizons vs. depth
intervals vs. depth functions) and the selection of soil prop-
erties used to compute the between-sample dissimilarity.
The first step in identifying an unknown soil is to

describe, sample, and characterize its soil profile. The
accurate characterization of soil properties and their
intrinsic variability has historically required a level of
training and experience only possessed by soil scientists
(Rossiter, Liu, Carlisle, & Zhu, 2015; Salley et al., 2018).
Recent efforts to simplify and standardize the process of
soil profile characterization, however, have made it eas-
ier for non-soil scientists to collect accurate soil property
data that can be used for soil identification. For example,
the Land Potential Knowledge System (LandPKS) mobile
app provides a complete digital interface for collecting and
recording a small subset of standard morphologic data at
standardized soil depths (Herrick et al., 2013, 2016, 2017).
The current LandPKS app provides tools for estimating
soil texture classes using a digital key that guides users
through a series of texture-by-feel tests (Salley et al., 2018).
It also allows users to measure Munsell soil color using
the smartphone’s camera and an external reference (e.g.,
post-it note) (Fan et al., 2017). With growing interest in
the collection of soil data by non-soil scientists, there is a
need to better understand how different levels of soil prop-
erty generalization, with respect to the characterization of
soil variability, affect identification accuracy. Specifically,
there is a need to understand how the characterization of
soil variability both with depth (i.e., depth-support) and
in feature space (e.g., percent clay vs. texture class) affect
our ability to correctly classify a soil. For example, a field
scientist with little-to-no soil training would not be able
to accurately describe a soil profile by genetic horizons or
accurately determine the clay and sand percentages at each
horizon. However, non-soil scientists can sample soil pro-
files at standardized depth intervals and estimate soil tex-
ture classes using tools like the LandPKS app.
With the proliferation of digital technologies an enor-

mous quantity of soil data has been digitized, creating
many national and global soil profile databases and dig-
ital soil maps (Brevik et al., 2015). The main objective
of this study was to evaluate the potential accuracy of
the NCSP algorithm using a simulated operational test-
ing framework for matching the soil at a point location
based on its numerical similarity to the soil components
mapped and digitally available in that area. To implement
this testing framework, we used a subset of the United
States National Cooperative Soil Survey Soil Characteriza-
tion Database (NCSS–SCD) as our simulated soil profile
test dataset (i.e., measured soil profiles at point-locations)
and the U.S. Soil Survey Geographic (SSURGO) database

as our soil profile reference library used for matching (i.e.,
mapped soil components in the area surrounding each test
profile). Since the NCSS-SCD dataset was collected by soil
scientists, this testing framework represents a simulation
of the potential accuracy achievable by the citizen scien-
tist when they have accurately measured their soil profile
data. Furthermore, within this simulated testing frame-
work, this study evaluated how soil property generaliza-
tion across both depth and feature space affect the identi-
fication output. Specifically, this study evaluated three dif-
ferent forms of depth-support (i.e., genetic horizons, stan-
dardized depth intervals, and derived depth functions) and
three soil property groups representing different degrees of
generalization associated with the different levels of expe-
rience required for their measurement (e.g., texture class
vs. percent sand, silt, and clay).

2 METHODS

2.1 Numerical soil identification
framework

The numerical soil identification testing framework,
described in detail in Figure 1, is comprised of four steps: (1)
process and subset NCSS–SCD soil pedon data, (2) query
SSURGO database for soil map unit components mapped
in the area surrounding each NCSS–SCD soil pedon based
on spatial filters, (3) resampling of soil profile data to dif-
ferent forms of depth-support, and (4) run the NCSP algo-
rithm on soil profiles with different generalized datasets
and depth-wise distributions and evaluate match results
based on the soil component and several measures of soil
functional similarity (i.e., ecological sites, land capability
classification, and taxonomic distance).

2.2 NCSS–SCD pedon data

Soil pedon data from NCSS–SCD were used as our simu-
lated soil profile test dataset. NCSS–SCD is a comprehen-
sive database of soil profile characterization data analyzed
by the Kellogg Soil Survey Laboratory and cooperating
laboratories. The NCSS–SCD contains data for more than
64,000 soil pedons collected from the 1950s to the present.
NCSS-SCD pedons are targeted samples designed to rep-
resent the central concept of a soil series, the central con-
cept of a soil map unit (SMU) component, and the range
of properties within a series or landscape. NCSS-SCD also
includes pedons sampled for different research projects
(e.g., Rapid Carbon Assessment, NEON). NCSS–SCD data
were queried from a Microsoft Access database (http://
ncsslabdatamart.sc.egov.usda.gov/, accessed 14 Sept. 2018).

http://ncsslabdatamart.sc.egov.usda.gov/
http://ncsslabdatamart.sc.egov.usda.gov/
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F IGURE 1 Conceptual diagram of the numerical soil identification framework

Field-collected soilmorphology data and records of the tax-
onomic history (e.g., sampling data, correlated taxonomic
class, taxonomic updates) for each pedon are recorded
and stored in the Natural Resources Conservation Ser-
vice (NRCS) National Soil Information System (NASIS)
database (NASIS database snapshot acquired 5 April 2017).
Each NCSS–SCD pedon has been classified to a soil series
class based on both the field described morphology data
and laboratory analysis. A subset of 6,220 soil pedons were
selected from theNCSS–SCDdatabase based on the follow-
ing filtering criteria: pedonsmust have (1) nomissing hori-
zons and have internally consistent depths (e.g., no over-
lapping horizon depths); (2) complete soil horizon prop-
erty data for the following properties: percent sand, per-
cent silt, percent clay, rock fragment volume (rfv), Munsell
color-moist, pH, and percent organic matter (om); and (3)
a correlated soil series name (i.e., taxonname) matching at

least one of the SSURGO component names returned from
the spatial query. Soil color, spatial coordinates and taxon-
omy informationwere extracted fromNASIS for each point
and joined to NCSS–SCD. The spatial distribution of soil
sampling points across the U.S. is presented in Figure 2.

2.3 SSURGO component classes

The SSURGO database contains detailed soil information
available for most areas of the U.S., as well as the Ter-
ritories, Commonwealths, and Island Nations served by
the USDA-NRCS, and is derived from detailed land sur-
veys and hundreds of thousands of soil observations (e.g.,
profiles, augerings, partial excavations) (Hudson, 1992).
The delineation of SSURGO map units is based on tacit
soil-landscape and hillslope models and the attribution of
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F IGURE 2 Map of the 6,220 NCSS–SCD soil pedon locations evaluated in this study. The red and blue boxes indicate locations of the
Renshaw and Mobridge example pedons (see Figure 4), respectively

those map units based on a limited number of representa-
tive pedons sampled within each soil map unit (Libohova
et al., 2013, 2019). Consequently, SSURGO SMUs describe
the modal concept of each soil class, reporting informa-
tion aggregated from the collection of field-described soil
observations hypothesized to represent the soil class con-
cept. Soil properties that cannot be measured in the field
are estimated by pedotransfer functions in NASIS, or occa-
sionally informed by NCSS-SCD lab data when available.
Since some NCSS-SCD pedons are sampled to represent
the central concept of a SMU component, it is possible that
in some comparisons the SSURGO SMU component data
could be a direct copy of theNCSS-SCD pedon data. Analy-
sis of the statistical distance between the two data sources,
however, showed that for most comparisons the distances
were relatively high (median distance= 37; Fig. S1-g). This
suggests that inmost cases the SMU component data is not
a direct copy of the NCSS-SCD pedon data (distance = 0 if
data sources are the same).
The SSURGO database contains over 300,000 SMU and

over 1,000,000 SMU components and is mapped at scales
typically ranging from 1:12,000 to 1:63,360. SMU delin-
eation (e.g. polygon) area is controlled by the concept of
a minimum legible area (MLA) which is the minimum
ground area that is legible on a map (Forbes, Rossiter,
& Van Wambeke, 1987). Agricultural lands have typically
been surveyed at order 2 (MLA of 1–4 ha.), while range-
land, forest, and degraded landscapes have been surveyed
at order 3 (MLA of 2–16 ha.) (Soil Survey Division Staff,

2017). Soil surveys in wilderness areas employ a mixed
order 3/4 strategy, with more detailed mapping near ripar-
ian corridors or ecologically sensitive areas. The composi-
tion of SMU (e.g. SMU kind) are closely tied to the com-
plexity of terrain contained by increasingly larger MLA:
consociations (i.e., dominated by a single soil taxa) and
complexes (i.e., two or more dissimilar soil taxa) at order
2, associations (i.e., two or more dissimilar soil taxa that
could be separated at larger mapping scales) and com-
plexes at order 3, and mostly associations at order 4 (Soil
Survey Division Staff, 2017). Each SMU component con-
tains a modal soil profile concept described by genetic
horizons with representative soil property values assigned
to each horizon. The majority of SSURGO components
(approximately 88%) are mapped to the level of soil series
or soil series-phase in U.S. soil taxonomy with approxi-
mately 24,000 unique soil series and approximately 29,000
unique soil series/series-phases within the U.S., and the
Territories, Commonwealths, and Island Nations served
by the USDA-NRCS. Because the SSURGO database does
not include soil color estimates, we used soil color data
from the NRCS Official Soil Series Descriptions (OSD)
database. The OSD database contains a global collection
of soil profile morphology descriptions (data sheets in nar-
rative form) for the approximately 24,000 soil series.
Using the point location of each NCSS–SCD test pedon,

we ran a spatial query on the SSURGO database to extract
soil components within the intersecting soil map unit (i.e.,
home map unit) and all map units adjacent to the home
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(a) Spatial Neighbor Map

1000 m search radius

Pedon

Intersecting Vertices

64 m
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295 m

310 m

Home SMU Adjacent SMU-1

Adjacent SMU-2

Adjacent SMU-3

Adjacent SMU-4

(b) Spatial Neighbor Graph

F IGURE 3 Schematic illustrating (a) the spatial query of SSURGO soil map units (SMU) that either intersect the NCSS–SCD pedon (i.e.,
Home SMU) or are adjacent to the Home SMUwith an intersecting boundary within a 1 km search radius of the test pedon. The above example
is from the Renshaw test pedon (see Figure 2 for geographic location and Figure 4a for queried SMU components) and illustrates the calculation
of (a) distances between the test pedon and the closest intersecting vertices for all adjacent SMUs and (b) the distance relationships between
the test pedon in the Home SMU and all adjacent SMUs

map unit whose closest intersecting boundary was within
a 1 km search radius of the test pedon (Figure 3). We
chose a 1 km search radius based on the range of MLAs
for order 2 and 3 soil surveys (1:12,000 to 1:63,360) typi-
cally encountered in SSURGO. A soil map at 1:63,360 map
scale has an MLA of 16 ha, which equates to a circle with a
radius of 225 m. Order 4 soil maps (some wilderness areas
within SSURGO) have map scales ranging from 1:63,360
to 1:250,000. At 1:250,000 map scale, a soil map has an
MLA of 252 ha or circle with radius of 895 m. Thus, our
1 km search radius is approximately four time the MLA
of a large-scale order 3 map and slightly greater than the
MLA of a large-scale order 4 map. The requirement of spa-
tial adjacency in our search criteria was based on a com-
promise between selecting a search radius suitable across
a range of soil mapping orders (i.e., order 2–4) and the pro-
cessing time required for spatial adjacency evaluation of
the SSURGO polygons. SSURGO data were queried from
NRCS Soil Data Access (http://sdmdataaccess.nrcs.usda.
gov/, accessed on 16 Sept. 2019). For each queried SSURGO
component, we extracted the OSD soil color data from the
OSD matching the SSURGO component name (i.e., corre-
lated soil series name). Due to differences in horizonation
between OSD soil profiles and the SSURGO component
instances of each soil series, we combined each SSURGO
component profile with itsmatching OSD profile after slic-
ing each profile into 1 cm increments. The merging of the
two datasets along a common 1 cm depth basis minimized
the number of processing steps and potential introduction
of error, while also producing a format alignedwithNCSP’s

computation of slice-wise dissimilarity at each 1 cm incre-
ment. Horizonation differences were not an issue in the
equal-area spline and depth interval datasets since sepa-
rate equal area spline functions were modeled to each soil
property.

2.4 Soil property generalization

Two types of soil property generalization were evaluated:
(1) different forms of depth-support and (2) different
degrees of generalization in feature space. The verti-
cal sampling of soil profiles typically employs one of
three different types of depth-support: genetic horizons,
standardized depth intervals, or continuous depth func-
tions (e.g., sampling every 1 cm). Most soil classification
systems characterize soil profiles by genetic horizons
which are delineated using visual and tactile observations
guided by current theories of soil development (IUSS -
WRB, 2015; Soil Survey Staff, 1999). Sampling by either
genetic horizon or soil depth interval transforms a theo-
retically continuous depth function into a stepped depth
function, resulting in potential inaccuracieswhen attempt-
ing to predict soil property values at specific soil depths
(Bishop, McBratney, & Laslett, 1999; Malone, McBratney,
Minasny, & Laslett, 2009). To correct for this, many studies
have used equal-area quadratic spline functions to model
the ‘true’ depth-wise distribution of soil properties from
profile data (Bishop et al., 1999; Malone et al., 2009;
Odgers, McBratney, & Florence, 2018; Ponce-Hernandez,

http://sdmdataaccess.nrcs.usda.gov/
http://sdmdataaccess.nrcs.usda.gov/
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TABLE 1 Soil property groups based on user knowledge and experience (i.e., Novice, Expert, and Expert-Plus)

Soil property groups
Soil Property Abrv. Type Novice Expert Expert-Plus
Soil color (CIE L*a*b*) L, A, B ratio X X X
Rock fragment volume class rfv-class ordinal X X X
Texture class texture ordinal X X X
Rock fragment volume rfv ratio X X
Clay clay ratio X X
Sand sand ratio X X
Silt silt ratio X X
pHa ph ratio X
Organic mattera om ratio X

aRequire instruments for measurement

Marriott, & Beckett, 1986). This study used equal-area
quadratic splines to transform soil profile data sampled
by genetic horizon into two different soil profile datasets:
(i) a sequence of standardized depth intervals following
the depth breaks defined by LandPKS (i.e., 0–10, 10–20,
20–50, 50–70, 70–100, 100–120 cm), and (ii) continuous soil
depth functions (i.e., predicted values at 1 cm increments)
(Malone et al., 2009). The equal-area quadratic spline was
implemented using the ea-spline function from the ithir R
package (Malone, 2016). The ea-spline fits a mass preserv-
ing depth functionwhere the original data is preserved and
can be retrieved via integration of the continuous spline.
The shape of the spline function (i.e., smoothness between
input horizons) is controlled by a smoothing parameter,
lambda (λ). We used lambda value of 0.1 which has been
shown to provide reasonable results for most soil proper-
ties (Bishop et al., 1999). In addition to the three forms of
depth-support, three soil property groups were identified
based on the level of experience required for theirmeasure-
ment (i.e., Novice, Expert, and Expert-Plus soil property
groups), with each group representing a different degree of
generalization in feature space. Given the increased ease in
measuring soil color and texture by non-soil scientists, as
well as their general importance in U.S. Soil Taxonomy for
differentiating and classifying soils, we selected soil texture
class (derived from % sand, silt, clay), rock fragment vol-
ume class (i.e., 0–15%, 15–35%, 35–65%, and> 65%), and soil
color (CIE L*a*b* coordinates) to represent our ‘Novice’
soil property dataset (Torrent & Barron, 1993). Our Expert
and Expert-Plus datasets are composed of all properties in
the Novice dataset plus additional soil properties that an
expert soil scientist would be able to measure or estimate
in the field. For the Expert dataset this included the addi-
tion of percent sand, silt, clay, and rock fragment volume.
For the Expert-Plus dataset this included all properties
in the Expert dataset plus the addition of percent organic
matter and pH (Table 1). The combined effects of the

different depth-wise distributions (i.e., genetic horizon,
depth intervals, and depth functions) and soil property
groups (i.e., Novice, Expert, and Expert-Plus properties)
on soil profile identification accuracy were evaluated.

2.5 Numerical classification of soil
profiles

Numerical classifications between NCSS–SCD pedons and
SSURGO soil map unit components were computed using
the NCSP function from the aqp R package (Beaudette
et al., 2013). At each point-location all queried soil profiles
were segmented at 1 cm increments creating a soil prop-
erty matrix for each profile, with rows representing depth
slices and columns representing soil properties. At each
depth slice the vector of soil property data is extracted from
each soil profile propertymatrix, row-wise, and aggregated
forming a new depth-slice matrix 𝑋𝑖:

𝑋𝑖 =

|||||||||

𝑋𝑃𝑡,𝑖,𝑐𝑙𝑎𝑦 𝑋𝑃𝑡,𝑖,𝑠𝑎𝑛𝑑 𝑋𝑃𝑡,𝑖,𝑐𝑜𝑙𝑜𝑟 ⋯ 𝑋𝑃𝑡,𝑖,𝑘
𝑋𝑃1,𝑖,𝑐𝑙𝑎𝑦 𝑋𝑃1,𝑖,𝑠𝑎𝑛𝑑 𝑋𝑃1,𝑖,𝑐𝑜𝑙𝑜𝑟 ⋯ 𝑋𝑃1,𝑖,𝑘
⋮ ⋮ ⋮ ⋱ ⋮

𝑋𝑃𝑗,𝑖,𝑐𝑙𝑎𝑦 𝑋𝑃𝑗,𝑖,𝑠𝑎𝑛𝑑 𝑋𝑃𝑗,𝑖,𝑐𝑜𝑙𝑜𝑟 ⋯ 𝑋𝑃𝑗,𝑖,𝑘

|||||||||
where rows represent profiles (Pj) and columns repre-
sent properties (k) at depth slice i. Slice-wise comparisons
were calculated at each 1 cm depth slice to a maximum
depth of 120 cm using Gower’s generalized dissimilarity
metric (Gower, 1971). Gower’s generalized dissimilarity
calculates the dissimilarity (i.e., feature-space distance)
between objects t and j by taking the average dissimilarity
score over all possible k attribute comparisons:

𝑺𝒕𝒋 =
∑𝑣
𝑘=1 𝑆tjk𝑊𝑘∑𝑣
𝑘=1 δtjk𝑊𝑘

where 𝑆tjk is the contribution of vari-

able k to the similarity between objects t and j, 𝑊𝑘 is
the weighting factor for variable k, δtjk is an indicator of
whether variable k is present in both objects and thus
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can be compared, and v is the total number of vari-
ables. For continuous or ratio variables (e.g., % clay) 𝑆tjk =
|𝑋tk − 𝑋𝑗𝑘|∕𝑅𝑘, where 𝑋tk and 𝑋𝑗𝑘 are the values of vari-
able k for objects t and j, respectively, and 𝑅𝑘 is the range
of variable k within the sample. For ordinal variables (e.g.,
texture class) all 𝑋tk are replaced by their ranks 𝑟tk deter-
mined over all objects, where 𝑆tjk = 0 if the two objects
agree on variable k, otherwise:

𝑆tjk =

|||𝑟tk − 𝑟𝑗𝑘
||| − (𝑇tk − 1) ∕2 −

(
𝑇𝑗𝑘 − 1

)
∕2

max {𝑟𝑘} − min {𝑟𝑘} −
(
𝑇𝑘, 𝑚𝑎𝑥 − 1

)
∕2 −

(
𝑇𝑘, 𝑚𝑖𝑛 − 1

)
∕2
.

where 𝑇tk is the number of objects which have the same
rank score for variable k as object j; 𝑇𝑘, 𝑚𝑎𝑥 is the number
of objects which have the maximum rank (i.e., {𝑟𝑘}); and
𝑇𝑘, 𝑚𝑖𝑛 is the number of objects with the minimum rank
(i.e., {𝑟𝑘}), for variable k in the ordering (Podani, 1999). In
the present application objects t and j represent depth slices
from theNCSS–SCD test pedon and a SSURGOcomponent
profile, respectively. 𝑆𝑡𝑗 is calculated between the NCSS–
SCD test pedon and each SSURGO component profile pro-
ducing a (1 x j) dissimilarity matrix (𝐷𝑖) at each depth
slice. The pair-wise dissimilarity 𝐷 between the NCSS–
SCD pedon and each SSURGO component profile is com-
puted as the sum of the slice-wise dissimilarity:

𝐷 =

𝑛∑
𝑖=1

𝑤𝑖𝐷𝑖

where n is the total number of slices and wi is an optional
weighting coefficient. Dissimilarity values in the final pair-
wise dissimilarity matrix were rescaled by dividing by the
maximum dissimilarity andmultiplied by 100, resulting in
final dissimilarity values ranging between 0 and 100. No
depth weighting or property weighting were performed,
and undefined dissimilarities were retained for all non-
soil (i.e., bedrock) vs. non-soil comparisons and replaced
with the maximum between-slice dissimilarity or all soil
vs. non-soil comparisons. This ensured that the dissimi-
larity between a slice of soil in one profile and a slice on
non-soil in another profile is maximized (e.g., Profile 2: Bt
horizon at 80 cm vs. Profile 3: R horizon at 80 cm; Fig-
ure 1), reflecting the fact that they are highly different. Sim-
ilarly, in profile collections with both deep and shallow
soils, when two shallow soils are compared at depths below
their maximum profile depths (e.g., Profile 3 vs Profile 5 at
80 cm; Figure 1), undefined dissimilarities are retained to
reflect the fact that no soil is being compared. All dissimi-
larity values calculated between theNCSS–SCDpedon and
each SSURGO soil map unit component were extracted
from the dissimilarity matrix. Since the SSURGO spatial
query can include multiple soil map units (i.e., Home +
adjacent within 1000 m; Figure 3), the occurrence of mul-

tiple instances of the same component class is common.
In our ranking evaluation, the lowest dissimilarity value
from each unique component class was used in the final
ranking, and among these final values the component class
with lowest dissimilarity value was used to evaluate the
soil component match rate (i.e., match rate between top
ranking SSURGO component series name and NCSS-SDC
pedon series name).
To better account for functional similarity between the

predicted component (i.e., top ranking component) and
correct component (i.e., SSURGO component series name
that matches the NCSS-SDC pedon series name) we eval-
uated match rates based on NRCS Land Capability Classi-
fication (LCC) (Klingebiel and Montgomery, 1966), NRCS
Ecological Site Descriptions (ESD) (Caudle, 2013), and a
measure of taxonomic distance (Minasny & McBratney,
2007; Rossiter, Zeng, & Zhang, 2017). Both LCC and ESD
provide a higher order grouping structure relative to soil
series classes (Salley, Talbot, & Brown, 2016b), where mul-
tiple soil series can belong to the same LCC or ESD class
based on a similarity in land potential and thus provide
insight into the functional similarity of misidentified soil
profiles. Taxonomic distance values provide a quantita-
tive metric for identifying instances where the misidenti-
fied soil component is highly similar to the correct compo-
nent in terms of the soil properties evaluated and should
therefore be reassigned as a correct match. In this study
we used distance in property space as our measurement
of taxonomic distance, computed from Gower’s general-
ized dissimilarity metric results returned from the ‘NCSP’
function. Specifically, we calculated the difference in tax-
onomic distance (DTD) between the predicted component
(i.e., smallest Gower’s dissimilarity to NCSS-SDC pedon)
and the correct component (i.e., SSURGO component that
matches the NCSS-SDC test pedon):

𝐷𝑇𝐷 = 𝑆𝑡𝑐 − 𝑆𝑡𝑝

where 𝑆𝑡𝑐 and 𝑆𝑡𝑝 are the Gower’s generalized dissimi-
larity metrics between the NCSS-SDC test pedon and the
correct component and predicted component, respectively.
Using a heuristic approach, we defined two thresholds
(i.e., DTD5: 5 taxonomic distance units; DTD10: 10 taxo-
nomic distance units) for determining an acceptable range
of taxonomic distance between the predicted and cor-
rect SSURGO components. Threshold values were derived
using expert knowledge and interpretation of soil series
similarity using functional indicators (e.g., LCC, ESD) to
determine conservative DTD value ranges. Thus, DTD5
and DTD10 represent the number of taxonomic distance
units between the predicted component and the correct
component considered to be within an acceptable range of
similarity.
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TABLE 2 Numerical soil profile identification results (moist color)

Depth generalization
Property generalizationa Genetic horizons Depth intervals Equal-area spline

Identification accuracy (%)
Component match
Novice 53 46 53
Expert 57 48 57
Expert-Plus 59 53 60

ESD match
Novice 82 78 82
Expert 84 79 83
Expert-Plus 85 83 85

LCC match
Novice 75 70 76
Expert 77 71 77
Expert-Plus 79 74 79

DTD5
Novice 67 57 69
Expert 74 65 75
Expert-Plus 77 70 78

DTD10
Novice 79 65 82
Expert 85 76 86
Expert-Plus 88 81 89

aESD, ecological site description; LCC, land capability class; DTD, difference in taxonomic distance.

3 RESULTS

The basic set of soil properties included in the Novice
dataset resulted in nearly as high identification accuracy
(46–53%) as that achievedwith theExpert (48–57%) dataset,
and only marginal improvement (53-60%) with the addi-
tion of pH and organic matter in the Expert-Plus dataset
(Table 2). The type of depth-support (genetic horizons,
standardized depth intervals, and equal-area splines) used
to represent depth-wise soil variability had a small effect
on identification accuracy, with slightly lower accuracies
for the standardized depth intervals relative to genetic
horizons or equal-area splines. Identification accuracies
based on ESDs and LCC followed similar trends for the
Novice (ESD: 78–82%; LCC: 70–76%), Expert (ESD: 79–84%;
LCC: 71–77%), and Expert-Plus (ESD: 83–85%; LCC: 74–
79%) datasets, with slightly lower accuracies for the stan-
dardized depth intervals (Table 2).
Examples of the numerical soil profile identification out-

put for a correct component match and misidentification
are shown in Figure 4. The Renshaw test case is an exam-
ple of a correct component match where the most similar
SSURGO component (i.e., lowest dissimilarity) matched
the soil series classified to the NCSS–SCD test pedon

(Figure 4a). In contrast, the Mobridge test case is an exam-
ple of an apparentmisidentification,where theNCSS–SCD
test pedonmatched the secondmost similar SSURGOcom-
ponent (Figure 4b). In US Soil Taxonomy, the Mobridge
soil series is within the Fine-silty, mixed, superactive,
mesic Pachic Argiustoll Family, while the Highmore soil
series is in the Fine-silty, mixed, superactive, mesic Typic
Argiustoll Family. Both series are classified with the same
Family differentiae (i.e., fine-silty, mixed, superactive,
mesic) but differ in their subgroup taxonomy (i.e., Pachic
vs. Typic). This difference equates to a difference in mollic
epipedon thickness, with the Mobridge’s epipedon being
greater than 50 cm (Pachic) and the Highmore’s epipedon
being less than 50 cm (Typic). While these types of dif-
ference result in separate subgroup taxa, from a land-use/
land-potential perspective these differences may have
little-to-no practical or appliedmeaningwhen a soil’s prop-
erties fall within the tolerances of (for example) a single
irrigation or fertilization schedule. This is supported by
the fact that both components have the same LCC (2-c)
and similar ESDs (Highmore ESD: Loamy; Mobridge ESD:
Loamy Overflow).
We evaluated the use of taxonomic distance to account

for functionally similar matches that were misidentified
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(a) Correct identification of the Renshaw soil series

(b) Misidentification of the Mobridge soil series
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Test Pedon SSURGO Component Profiles

Test Pedon SSURGO Component Profiles

Silty clay loam Silt loam Sandy loam

Silty clay Clay loam Loam Loamy sand

Sand

Loam

Silt loam

Silty clay Clay loam

Silty clay loamClay Sand

F IGURE 4 Soil identification results using the Novice dataset with genetic horizon depth-support. SSURGO component profiles are
ordered by increasing dissimilarity to the NCSS–SCD test pedon. The Renshaw test case (a) is an example of a component match where the
NCSS–SCD test pedon series name and top ranking SSURGO component namematch. TheMobridge test case (b) is an example of amisidentifi-
cation (Mobridge= second rank) even though the test pedon exhibits a high taxonomic similarity amongst the top several SSURGOcomponents.
Based on the DTD5 threshold, this case would be reassigned as correct due to its high taxonomic similarity. Soil texture classes are represented
as an ordinal variable ranked according to approximate available water holding capacity given equal volume of coarse fragments and organic
matter concentration. Soil texture classes are ranked in the following order: sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam,
clay loam, silty clay loam, sandy clay, silty clay, and clay

due to minor taxonomic differences. The distribution
of taxonomic distance values for the correctly classified
SSURGO profiles (i.e., Match), the top ranking com-
ponents (i.e., lowest dissimilarity) when a pedon was
misidentified (No-Match – Top Component), and the
correct component (i.e., SSURGO component matching
the NCSS–SCD test pedon) when a pedon was misiden-
tified (No-Match – Correct Component) are presented
in Figures 5 and Supplemental Figure S1. These three
groupings of taxonomic distance values were evaluated
across the different soil property groups and depth-wise
generalizations (Figures 5, Supplemental Figure S1). Simi-
lar to our componentmatch rate results, the three different

soil property datasets, with their different degrees of soil
property generalization, had a more pronounced effect on
taxonomic distances compared to type of depth-support
used (Figures 5, Supplemental Figure S1, Supplemental
Table S1). One notable effect was the increase in taxo-
nomic distances from the Novice to the Expert and from
the Expert to the Expert-Plus datasets for both correctly
classified (i.e., Match) and misidentified (i.e., No-Match)
observations (Figure 5, Supplemental Table S1). This
increase in taxonomic distance occurs due to the addition
of several continuous soil properties (i.e., Sand, Silt, Clay,
RFV, OM, pH), thus increasing the potential variability
between soil components. However, despite this general
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F IGURE 5 Density plots of taxonomic distance for the Novice (a), Expert (b), and Expert-Plus (c) datasets, with depth-wise variability
represented by genetic horizons. The distribution of taxonomic distance values are shown (a-c) for the correctly classified pedons (Match); the
top ranking componentwhen a pedon ismisidentified (No-Match – TopComponent); and the correct componentwhen a pedon ismisidentified
(No-Match – Correct Component). For all misidentified (i.e, No-Match) cases, the distribution of the difference in the taxonomic distance
between the predicted class (Top Component) and the correct component class (Correct Component) is also shown (d). Vertical lines indicate
the median value for each group

increase in taxonomic distance, there was a decrease in the
taxonomic distance between the top ranking component
(i.e., smallest taxonomic distance to the test pedon) and the
correct component class (i.e., SSURGO component match-
ing the NCSS–SCD test pedon) with the addition of soil
information (Figure 5d). In other words, for the misiden-
tified pedons the use of more specific soil property data
(e.g., percentage of clay vs. texture class) and the addition
of new soil properties (i.e., OM, pH) resulted in predicted
classes more similar to the correct soil classes. Addition-
ally, the increase in taxonomic distance values from the
Match to the No-Match – Top Component indicates that
the misidentified NCSS–SCD test pedons are generally
more dissimilar to the queried SSURGO components
relative to the NCSS–SCD test pedons that were correctly
matched. This suggests that themisidentified pedons were
not well represented by the modal SSURGO profiles and
thus likely represent extragrades within the queried soil
components or possibly a component not represented by
the mapped components within our search radius.
The use of our heuristic taxonomic distance thresholds

raised the identification accuracy from 46–60% for compo-
nentmatches to 57–78% for theDTD5 threshold and 65–89%
for theDTD10 threshold across all datasets. In theMobridge
test case the taxonomic difference between the predicted
SSURGO class (Highmore) and the correct SSURGO class

(Mobridge) was 4.3 distance units. Based on our DTD5
threshold, this test case would be reassigned as correct due
to its high taxonomic similarity. Although the DTD5 and
DTD10 thresholds are largely subjective, their match rates
were very similar to the ESD (78–85%) and LCC (70–79%)
match rates (Table 2).

4 DISCUSSION

4.1 Limits and sources of error

The error rate of the numerical soil identification frame-
work presented in this study (40–54%) can be attributed
to several sources, including those associated with: (1) our
numerical soil identification framework, (2) the pedon
point-location test dataset (NCSS–SCD), (3) soil survey
map unit delineations and concepts (SSURGO), and (4)
soil series concept purity/overlap. Each potential source of
error is discussed in detail below.

4.1.1 Numerical soil identification
framework

In the hierarchical structure of Soil Taxonomy, criteria for
the splitting of soil taxa often does not directly align with



12 MAYNARD et al.

the quantitative data used in our numerical soil identifica-
tion. For example, at the highest classification level, differ-
entiation between soil orders is largely based on diagnos-
tic horizons which encapsulate depth dependent changes
in specific soil properties (e.g., vertical arrangement and
aggregate measures). At lower levels (i.e., suborder, great
group, subgroup) most breaks are often based on soil
limitations including those relating to the soil moisture
regimes (Aquic), shallowbedrock (Lithic), or zones ofmin-
eral accumulation (Calcic). The depth dependent nature of
these differentiating criteria makes it difficult to approxi-
mate using a slice-wise comparison approach. The NCSP
algorithm can incorporate site or profile-specific attributes
by calculating a separate profile dissimilarity matrix that
can be averaged with the final summed slice-wise dis-
similarity matrix. While all soil properties analyzed in
this study were horizon or depth-specific, the addition of
profile-specific (i.e., “aggregate”) soil properties may help
improve our identification accuracy. For example, Young
and Hammer (2000) used profile-specific variables in a
clustering analysis of soil classes including: depth to max-
imum clay content, difference between the minimum and
maximum soil profile clay content, and thickness of soil
profile colors meeting mollic criteria. In many cases the
scale of aggregate profile-specific properties, which can be
derived from existing depth-wise property data, is much
closer to the scale of breaks and criteria used in Soil Taxon-
omy and thus may help to improve identification results.
Any numerical comparison of soil profiles requires that

the collection of horizons for each soil profile be treated
as an ordered group. In the NCSP algorithm this is par-
tially accomplished by calculating a separate dissimilarity
matrix at each soil layer or slice, followed by the summa-
tion of all slice-wise dissimilarity matrices. Amajor limita-
tion of this approach is that it treats all depth increments
as independent of each other, and thus fails to account for
the depth dependent relationships that exist between soil
properties that are heavily relied upon in Soil Taxonomy.
Alternative approaches that can account for these depth
dependent relationships, like incorporating soil diagnostic
features in a separate profile dissimilarity matrix, would
likely enhance our ability to correctly identify soil classes.

4.1.2 NCSS–SCD

The NCSS–SCD is comprised of pedons collected since the
1950s. Such a wide time span introduces three sources of
potential error. The first relates to changes in Soil Taxon-
omy that might have occurred since the pedon was ini-
tially sampled and whether the soil series initially classi-
fied to the pedon was updated during those changes. We
attempted to minimize this type of error by only select-

ing NCSS–SCD pedons whose correlated soil series name
(i.e., taxonname) matched a SSUROGO component name
within our spatial query. This would prevent cases where
a soil series name was discontinued; however, this may
not prevent errors where a series was split into two or
more separate series but the NCSS–SCD pedon was not
updated to match the correct series. The second source of
error has to do with GPS positional accuracy associated
with each pedon. Since many of the pedons in NCSS–SCD
were sampled before the development of GPS technology,
their locationswere recorded using the Public Land Survey
System (PLSS) and later digitized using the Township and
Range designations. Libohova, Seybold, Adhikari, Wills, &
Beaudette, 2019 showed how low GPS positional accuracy
associated with a subset of NCSS–SCD pedons containing
both GPS and PLSS-derived coordinates resulted in very
different soil pH values returned from SSURGO spatial
queries. Errors associated with positional accuracy were
alsominimized by our spatial query, where theNCSS–SCD
pedon matched a SSURGO component within the 1000 m
search radius. Finally, the third source of potential error
resulting from the temporal nature of the dataset can occur
due to methodological changes in the measurement soil
properties (e.g., pH, soil carbon) over time.
An additional source of error unrelated to the tempo-

ral nature of the dataset can occur due to sampling bias.
In general, most soil surveys employ a purposive sampling
design for the collection of field data, where a soil scientist
will select sampling points in locations thought to, (i) rep-
resent the central concept of mapped soil series, (ii) delin-
eatemap unit edges, or (iii) validate soil-landscapemodels.
This can result in a confirmation bias, where the soil map-
per, based on their expert judgment, is expecting to char-
acterize a particular soil series before even digging a soil
pit (Libohova et al., 2019). This is more likely to occur on
consociations where the dominant soil component com-
prises a large areal fraction of the map unit. For example,
the Mobridge test case is in the ‘Highmore silt loam, 2 to 6
percent slopes’ soil map unit. This map unit is a consocia-
tion with the Highmore component mapped on 85% of the
map unit and the Mobridge component mapped on 6% of
themap unit. Based on these estimated distributions a gen-
eral expectation to encounter the Highmore component is
likely to be high.

4.1.3 SSURGO

The SSURGOdatabase consists ofmore than 3,000 soil sur-
veys carried out over multiple decades. Due to their vary-
ing goals, these soil surveys have differences in the total
area mapped as well as the level of support from field sur-
veys and pedon data which generate component concepts
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and delineate their spatial footprint across the landscape
(Libohova et al., 2019). Initial soil surveys were conducted
using political boundaries (e.g., county), whilemore recent
soil surveys are conducted using natural boundaries (i.e.,
Major Land Resource Areas, MLRA; or Land Resource
Units, LRU) (Indorante, McLeese, Hammer, Thompson, &
Alexander, 1996). Soil surveys based on political bound-
aries often resulted in duplicative thematic classes (i.e.,
map unit and component concepts) between spatially adja-
cent survey areas. Mapping to MLRA boundaries has
helped minimize this thematic redundancy since the spa-
tial footprint of a particular set of unique soil components
is typically contained within a resource area’s natural
boundary. Soil survey updates, however, generally occur
on a 30-year cycle andmany survey areas have not yet been
updated or recorrelated along resource area boundaries
(Indorante et al., 1996). Therefore, depending on the survey
vintage and MLRA update progress, SSURGO map units
can vary widely in their consistency/redundancy. Simi-
larly, soil survey vintage also affects the spatial accuracy
of SSURGO data, with older surveys (rangeland, forested
lands, and wilderness areas) often mapped at coarser spa-
tial resolutions (i.e., soil survey mapping order; e.g., Order
2: 1:12,000 vs. Order 4: 1:64,000), which affects the level
of detail used to characterize soil spatial heterogeneity
(i.e., consociation vs. association/complex and the map-
ping of minor components). Furthermore, most original
soil surveys used rectified, high-altitude photographs as
their standard basemaps. Prior to digitization, all linework
from thesemaps had to be transferred byhand to an accept-
able base map (e.g., USGS 7.5′ topographic quadrangle),
adding additional uncertainty on the final placement of the
digitizedmap unit boundaries (D’Avello &McLeese, 1998).
The continuous nature of soil variability can result in

a gradual gradation from one soil component to another
within a SMUor collection of related SMUs. Consequently,
there are regions of the landscape where the diagnostic
characteristics of a soil closely match one soil component
relative to others, while in other regions the component
identity of the soil is less well defined (Young, Hammer,
& Williams, 1997). Within SSURGO, each map unit com-
ponent is described by its modal concept, reporting infor-
mation aggregated from a collection of field-described soil
profiles that represent the component concept. This study
used the representative values for all SSURGO soil data.
Depending upon the value range for each property within
a given component class, the representative value may
fail to adequately differentiate an instance of that class
from other surrounding soil components. Thus, in many
cases our inability to account for variability within compo-
nent classes may limit our ability to accurately differenti-
ate between-component differences (Soil Survey Division
Staff, 2017).

4.1.4 Soil taxonomy

Soil Taxonomy is a hierarchical classification system that
consists of six levels: Order, Suborder, Great Group, Sub-
group, Family, and Series. Classification from higher to
lower levels occurs according to a bifurcated key based on
specific rules and criteria. Common criteria used to sepa-
rate soils at different levels of the hierarchy include diag-
nostic horizons (i.e., soil layers whose structure and gen-
esis is correlated to specific soil-forming processes), soil
temperature and moisture regimes, and specific soil prop-
erty values or ranges (e.g., soil color, texture, and chemical
properties). The rigid hierarchical structure of Soil Taxon-
omy can result in a high diversity of soil classes in areas
where the range of diagnostic values spans multiple taxo-
nomic thresholds. Numerous studies have reported a high
degree of taxonomic variability within individual soil map
units (McCormack &Wilding, 1969; Nordt, Jacob, & Wild-
ing, 1991; Wilding, Jones, & Schafer, 1965; Young et al.,
1997). For example, Young et al. (1997) examined the map
unit composition of a single map unit on the Missouri
River floodplain based on soil transects. The map unit,
Eudora silt loam, was correlated as a consociation (i.e., one
dominant soil type with only minor inclusions of dissimi-
lar soils). In their analysis of the Eudora silt loam conso-
ciation, Young et al. (1997) identified 28 unique soil fam-
ilies. Furthermore, of the 120 observed pedons, only 25%
(30) were in the named family taxa of the map unit, but
83% (100) were in either the named family taxa or a similar
family taxa. High taxonomic diversity coupled with a high
degree of interpretive similarity among soil taxon results in
high levels of functional similarity and high misidentifica-
tion rates.
At the lowest level of Soil Taxonomy, soil series concepts

are developed based on a combination of soil taxonomic
differences at the Family level and perceived management
differences. In monothetic classification systems, such as
Soil Taxonomy, many misidentifications are a result of
small differences in the soil properties used to define diag-
nostic properties and horizons, where values slightly above
or below each set threshold determines which path down
the hierarchy a profilemoves at each taxonomic break (i.e.,
‘taxonomic chop’) (Butler, 1980; Rossiter et al., 2017). Thus,
individual soils classified to separate taxa may only differ
slightly with respect to one or more taxonomic limits, as
was illustrated in themisidentification of theMobridge soil
series (Figure 4b). Taxonomic distance provides an alter-
native approach that can correct for cases where function-
ally similar soils are classified separately due to taxonomic
thresholds. However, the utility of taxonomic distance as
an alternative to the component match rate depends on
the selection of soil properties. Different sets of soil prop-
erties that relate to specific soil functions or management
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objectives can be used to provide specificmeasures of inter-
pretive accuracy. For this study we selected soil properties
that are considered important diagnostic indicators of land
potential, and thus provide a general measure of interpre-
tive accuracy based on the calculated distance values.

4.2 Effects of soil property
generalization and depth-support on
identification accuracy

Generalizing soil property data and its effect on numeri-
cal soil identification has important implications for cit-
izen soil science initiatives. Our evaluation of different
soil property groups provided an assessment of both the
effects of generalizing soil properties in feature space
and the influence of different soil properties based on
the level of experience required for their measurement.
Among our soil property groups, the comparison between
the Novice and Expert directly evaluated the effects of
generalizing soil properties by comparing the use of tex-
ture and rock fragment volume classes (Novice group) to
a more detailed characterization that measured the per-
cent sand, silt, clay, and rock fragment volume. Adding
these additional continuous soil properties only produced
an incremental increase in accuracy. The evaluation of
the Expert-Plus dataset provides insight into the potential
improvement of identification accuracywith the collection
of additional soil properties that typically require a high
level of technical training or equipment (e.g., soil scien-
tists, pH meters). Similar to the differences between the
Novice and Expert datasets, there was a small improve-
ment in the Expert-Plus datasets both in terms of the com-
ponent match rate and a decrease in the taxonomic dis-
tance between the predicted class and correct class. This
general trend suggests that additional, modest improve-
ments in identification accuracy could be made by incor-
porating additional soil properties.
Our results showed that the form of depth-support used

to characterize soil profiles had a small effect on iden-
tification accuracy, with the depth interval support pro-
ducing slightly lower match rates (Table 2). For most soil
properties, genetic horizon support is generally believed
to provide a more accurate representation of depth-wise
variability relative to the use of depth interval support.
This is particularly true in highly stratified soils, soils with
textural discontinuities, or soils with diagnostic horizons
that overlap set depth intervals. In these types of soils the
use of depth interval support can lead to very different
soil property distributions relative to genetic horizon sup-
port. It is important to note that both soil datasets in this
study (NCSS-SCD and SSURGO) use genetic horizons to
describe soil profiles and thus the modeling of continuous
depth functions in any soils with abrupt, highly contrast-

ing genetic horizons could result in the creation of artifacts
when resampling to standard depth intervals (e.g., aver-
aging percentage of clay from Bqkm + Bt). However, any
comparisons between genetic horizons and depth intervals
must consider the number and sequence of depth intervals.
In this study we used LandPKS depth intervals (i.e., 0–1, 1–
10, 10–20, 20–50, 50–70, 70–100, 100–120 cm) which were
selected to provide a general approximation of the vertical
variation found in most soils. Our results confirm the util-
ity of LandPKS depth intervals in approximating vertical
soil variability across our test dataset (n= 6,220), where the
use of depth interval support resulted in only a small drop
in the match rates relative to genetic horizon support.
Evaluating identification accuracy based on exact com-

ponent matching assumes that all misidentified observa-
tions are equally serious errors, resulting in the under-
representation of the functional or management-relevant
similarity. For example, in SSURGOmany of the soil com-
ponents returned from a spatial query of the home and
adjacent map units are often taxonomically similar (often
within the same Subgroup or Family) and have similar
soil limitations and management potential but may only
differ slightly with regard to a particular diagnostic criteria
(e.g., color depth range requirement for mollic epipedons,
Figure 4b). The use of taxonomic distance to evaluate
identification accuracy can mitigate this but first requires
identifying specific criteria (e.g., thresholds) for defining
what is and is not similar. In our evaluation of taxonomic
distance, we defined two taxonomic distance thresholds
using a conservative value range based on the observed dis-
tribution of taxonomic distance values. Based on these sub-
jective thresholds, we observed an appreciable increase in
identification accuracy (from 46–60% to 65–89%) which we
believe represents an acceptable range of variation while
remaining sufficiently similar. Determining a threshold of
taxonomic similarity that also provides a meaningful indi-
cation of similarity in land-use potential is challenging.
The high accuracies based on the DTD10 threshold are in
a similar range as our management relevant identification
accuracies using ESDs (78–85%) and LCC (70–79%). At
the taxonomic classification level of the soil series or soil
series-phase, differentiating criteria are often based on
management relevant properties and conditions (e.g.,
slope, water table). Although the soil properties evaluated
in this study are highly relevant for landmanagement, they
may not provide the necessary information to differentiate
soils with other limiting physical or chemical properties.

4.3 Improving numerical soil
classification

Allocating soil profiles to existing classes using numer-
ical methods is challenging in monothetic classification
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systems. This is particularly true at highly detailed lev-
els of classification such as the soil series in Soil Taxon-
omy. As we have shown, class confusion often occurs due
to small differences in diagnostic properties and horizons
that span across rigid thresholds, producing the taxonomic
chop described by Butler (1980). This was shown with the
Mobridge and Highmore series where small differences in
mollic epipedon thickness separated the two series. These
results support previous criticisms on the use of elabo-
rate hierarchies of rationalized classes (i.e., divisions based
on taxonomic chop) for soil mapping (Butler, 1980; Fitz-
Patrick, 1971; Rossiter et al., 2017; Webster, 1968). When
soil series are created through a rationalized subdivision
of classes within a soil-taxonomic system, the differentiae
used to subdivide classes may not reflect locally important
differences in soil properties and conditions, thus resulting
in poor predictive ability. A solution to this problem was
proposed by Butler (1980) were he argues for a ‘taxonomic
hiatus’ or a separation between the top-down, rationalized
creation of classes within soil-taxonomic systems and the
bottom-up creation of classes by the soil surveyor that con-
form to the landscape based on natural boundaries and
local soil conditions. This hiatus would allow soil series
to be created that reflect management relevant differen-
tiae within a survey area (Salley, Curtis Monger, & Brown,
2016a), while still allowing soil series to be associated with
one or more of the higher-level taxonomic classes.
Current soil-taxonomic systems develop soil series by

rationalized subdivision of higher order classes, often
resulting in functionally similar soil classes that are prone
to misidentified. Furthermore, high levels of undocu-
mented within-map unit taxonomic variability further
complicate the ability to correctly match a field-described
soil profile to estimated SSURGO component profiles that
represent modal concepts. The extent to which a soil sur-
vey can characterize orminimizewithin-mapunit variabil-
ity depends on, (i) the level of intrinsic soil variability in
a survey area, (ii) the logistical and monetary resources
allocated to that survey effort, (iii) how well the current
soil series classes fit the taxonomic variability, soil property
modes and natural boundaries within that landscape, and
(iv) the survey area objectives and specifications (USDA-
NRCS, 2020). In light of the limitations imposed by cur-
rent soil-taxonomic systems, three main factors currently
limit the efficacy of soil identification models: (1) the abil-
ity to quantify and incorporate within-class variability; (2)
the ability to evaluate each soil profile as an ordered group
rather than a sequence of separate horizons or slices; and
(3) the ability to define and measure metrics of soil func-
tional similarity that can provide a more robust evaluation
of model error.
The limitations imposed by rigid hierarchical classifi-

cation systems are widely recognized (Lagacherie, 2005;

McBratney & de Gruijter, 1992; Odeh, McBratney, & Chit-
tleborough, 1992) and several modeling approaches have
been developed to address these issues, most notably those
based on fuzzy systems (i.e., fuzzy set theory and fuzzy
logic) and machine learning (ML) techniques (Burrough,
VanGaans, &Hootsmans, 1997; Chaney et al., 2016; Hengl,
Toomanian, Reuter, & Malakouti, 2007; Heung et al., 2016;
Hughes, McBratney, Minasny, & Campbell, 2014). While
many numerical soil classification algorithms return a dis-
tance metric, these distances are not the same as measures
of classification uncertainty (e.g., fuzzy or probabilistic
class membership) returned from fuzzy clustering or ML
methods. Techniques like fuzzy-k means with extragrades
(McBratney & de Gruijter, 1992) or more recently the
akromeson algorithmwhich employs endmembers to iden-
tify extragrades (Hughes et al., 2014) are able to quantify
non-hierarchical continuous classes. This means that each
soil profile in the classification can exist in more than one
class based on its numeric distance to the different class
centroids within the measured property space. Soil classi-
fication problems (i.e., arranging soil profiles into classes)
employ unsupervised classification techniques where the
number of unlabeled classes is unknown. While unsuper-
vised ML techniques (e.g., artificial neural networks, self-
organizing maps) are widely used for classification prob-
lems, they are not commonly used in soil classification.
Soil identification problems (i.e., allocating a soil profile
into an existing class), however, can use supervised classifi-
cation techniques since the class labels are known. Spatial
predictions of soil taxonomic classes have beenmade using
supervised ML techniques (Chaney et al., 2016; Hengl
et al., 2016; Ramcharan et al., 2017), however, these predic-
tive soilmapping (PSM) applications are restricted to using
spatially exhaustive environmental covariates (e.g., remote
sensing-based indices) which can produce high predic-
tion uncertainty. An interesting example of these efforts
is the POLARIS SMU component map of the contiguous
USwhich uses theDSMART algorithm to predict SSURGO
components at a 30 m grid cell size (Chaney et al., 2016).
A main limitation of the POLARIS modeling framework,
however, lies in the random nature of the point sampling
and component assignment within each soil map unit.
This results in significant overlap in covariate space for the
points assigned to each component, resulting in significant
class confusion within each random forest model (e.g., 17%
and 55% match rates for the top predicted and top ten pre-
dicted SMU component, respectively). Site-based soil iden-
tification (i.e., a single sampling site) has an advantage
over PSM in that it is not restricted to spatially exhaustive
covariates and therefore able to incorporate soil property
data into the classification model.
Most soil classification systems use genetic hori-

zon depth-support to characterize soil profiles which
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complicates direct numerical comparisons between pro-
files due to differing horizonation. The aqp NCSP algo-
rithm solves this issue by performing a series of separate
slice-wise comparisons at standardized depths. However,
when calculating distance based upon a series of sepa-
rate slice-wise comparisons the depth-dependent relation-
ships intrinsic to soil profile development (i.e., pedogen-
sis) are largely lost. These depth-dependent soil property
relationships are incorporated into most diagnostic crite-
ria used in Soil Taxonomy. In addition to the potential
benefits of using profile-specific attributes (e.g., diagnostic
features: presence/absence, thickness/depth to top) which
was previously addressed, two statistical approaches may
further help quantify these depth-dependent soil relation-
ships. The first involves the use of soil depth and soil
property weights within the slice-wise dissimilarity calcu-
lations. The NCSP algorithm can accommodate variable
depthweighting andGower’s generalized dissimilarity can
accommodate variable property weighting. The combina-
tion of both depth and property weights would allow for
the creation of custom weighting schemes that could be
implemented using a rule-based framework built upon Soil
Taxonomy. For example, if the dominant differentiating
criteria among soils returned from a SSURGO query was
soil color in the top 30 cm, we could assign higher prop-
erty weights to color in the top 30 cm and higher depth
weights to the slices in the top 30 cm. Similarly, if texture
differences in the particle size control section were impor-
tant, property weights for soil texture and depth weights
for slices within the control section could be increased.
The second approach involves the use of statistical mod-
els (e.g., ML models) that can accommodate large num-
bers of covariates and thus analyze the complete set of soil
property values across all slices rather than evaluating each
slice separately. While this approach solves the issue of
treating all profile slices as a group, it does not retain the
order of the slices within each profile group which results
in some information loss. This can be partially corrected
for by incorporating profile-specific attributes in addition
to the collection of slice-wise attributes.
Functional similarity among soil series can complicate

the evaluation of soil identification accuracy. Future work
is needed to develop robust metrics of soil functional sim-
ilarity among soil series so that the accuracy of soil iden-
tification models may be better evaluated (Rossiter et al.,
2017).

5 CONCLUSIONS

Soil components allow land managers to infer a general
range of soil behavior in response to management actions
and disturbance effects, indexed according to labels that
do not require an understanding of Soil Taxonomy. Cor-

rect identification of soil components at sampling loca-
tions is a challenging task, even for many soil scientists. A
main source of confusion lies in the fact that soils are com-
plex, heterogeneous systems that exhibit high variability
in both geographic and feature space. Despite these chal-
lenges, this study demonstrated that numerical soil classi-
fication can be used to support soil identification by citizen
scientists using limited, simple soil observations. Numer-
ical soil classification algorithms provide a quantitative
method for describing differences between soils and when
coupledwith accurate soil property data provides an objec-
tive framework for allocating an unknown soil to an exist-
ing soil class (e.g., soil component). This study showed that
the use of highly generalized soil property data (e.g., soil
texture class and rock fragment volume class, soil color)
resulted in nearly as high identification accuracy as that
achieved with more precise soil property data (e.g., per-
centage Sand, pH, OM) that requires a high level of tech-
nical training and/or equipment. Furthermore, this study
showed minimal effect from the type of depth-support
used to characterize vertical soil variability, with slightly
lower identification accuracies using standardized depth
intervals. The ability for land managers and other non-
soil specialists to accurately identify their soil is critical for
implementing sustainable soil management. Results from
this study support the feasibility of soil identification by
citizen scientists through the collection of soil profile data
using generalized property classes and standardized depth
intervals, provided the interval ranges sufficiently charac-
terize locally important soil features (e.g. abrupt changes
in soil texture or pH, diagnostic features such as duripans
or petrocalcic horizons, bedrock contact, etc.). While this
study supports the use of existing data and technology to
assist non-soil scientists in identifying and understanding
the soil resource, we do not suggest that the role of the
pedologist is on a path towards obsolescence. Rather, given
the complexity of soil systems and their central role in land
health, the job of the pedologist is needed now more than
ever.
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