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A Comparison of Soil Texture-by-Feel Estimates: 
Implications for the Citizen Soil Scientist

Pedology

Estimating soil texture is a fundamental practice universally applied by soil sci-
entists to classify and understand the behavior, health, and management of soil 
systems. While the accuracy of both the soil texture class and the estimates 
of the percentage of sand and clay is generally accepted when completed by 
trained soil scientists, similar estimates by “citizen scientists” or less experi-
enced seasonal resource scientists are often questioned. We compared soil 
texture classes determined by texture-by-feel and laboratory analyses for 
two groups: professional soil scientists who contributed to the USDA-NRCS 
National Soil Characterization Database and seasonal field technicians work-
ing on rangeland inventory and assessment programs in the Western United 
States and Namibia. Texture accuracy was compared using a confusion matrix 
to evaluate classification accuracy based on the assumption that laboratory 
measurements were correct. Our results show that the professional soil scien-
tists predicted the laboratory-determined texture class for 66% of the samples. 
Accuracy for seasonal field technicians was between 27 and 41%. When a 
“correct” prediction was defined to include texture classes adjacent to the 
laboratory-determined texture based on a standard USDA texture triangle, 
accuracy increased to 91% for professionals and 71 to 78% for seasonal field 
technicians. These findings highlight the need to improve options for increas-
ing the accuracy of field-textured estimates for all soil texture observers, with 
relevance to career soil scientists, seasonal technicians, and citizen scientists. 
Opportunities for improving soil texture accuracy include training, calibration, 
and decision support tools that go beyond simple dichotomous keys.

Texture is considered one of the most important properties influencing 
nearly all soil processes, functions, and properties, and is the most re-
quested analytical procedure of national soil survey laboratories (Soil 

Survey Staff, 2014a). Soil texture is determined through established laboratory 
procedures that measure the relative proportion of soil separates (Gee and Bauder, 
1986; Zobeck, 2004) or in the field where the sample’s apparent “texture-by-
feel” is estimated based on grittiness, cohesiveness, and stickiness (Rowell, 2014; 
Thien, 1979). Field estimation of soil texture is considered a fundamental practice 
(Franzmeier and Owens, 2008) universally applied by resource scientists to clas-
sify and understand the behavior, health, and management of soil systems. Because 
laboratory analysis of soil texture is costly and often takes time to analyze, recent 
work has suggested that texture-by-feel estimates can replace laboratory analysis 
altogether (Vos et al., 2016). While it is believed experienced soil scientists often 
estimate texture class and the percentage of separates (clay and sand) of mineral 
soils with relatively high precision (Post et al., 2006; Vos et al., 2016), past work 
has shown inexperienced soil observers require training, practice, and calibration 
before similar texture-by-feel proficiency can be obtained (Levine et al., 1989).

Previous studies have evaluated the ability of experienced or inexperienced 
soil observers to estimate apparent field textures against laboratory-derived par-
ticle-size analysis (Akamigbo, 1984; David, 1999; Foss et al., 1975; Hodgson et 
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Core Ideas

•	Soil scientists estimate soil texture 
class with higher accuracy then 
previously reported in the literature.

•	Seasonal field scientists and citizen 
scientists estimate texture-by-feel 
with similar accuracy to university 
students with limited training.

•	When novice observers misclassify 
texture class, it is more likely because 
of errors in estimating ribbon length 
than estimating grittiness.
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al., 1976; Levine et al., 1989; Minasny et al., 2007; Ogunkunle, 
1993; Post et al., 1986, 2006; Rawls and Pachepsky, 2002; Vos 
et al., 2016). However, most of this work was based on limited 
datasets, constrained to highly trained soil scientists or univer-
sity students, or focused only on the percentage of clay estima-
tion (Table 1). In general, research has shown trained soil sci-
entists have demonstrated approximately 50% absolute accuracy 
(Minasny et al., 2007), where absolute accuracy was defined as 
an exact match with the laboratory determination of soil texture 
class (see Box 1). Studies of student proficiency published prior 
to 1989 reported that absolute accuracy for less experienced 
observers averaged approximately 40% (Levine et al., 1989). 
Previous work (Table  2) has also shown that both novice and 
skilled observers predict Sandy- and Clayey- classes well, while 
their absolute accuracy of medium texture samples (Silty- and 

Loamy-) was somewhat lower. Novice observers found the pre-
dominately Silty- classes to be the most difficult to predict. For 
example, the Silt Loam texture class showed the greatest separa-
tion between novice and professional soil scientists (17 and 59% 
respectively; Levine et al., 1989).

Box 1. Laboratory analyses as reference for field esti-
mates. As in previous texture-by-feel studies, we used labora-
tory analyses as the reference for accuracy assessments. Because 
laboratory methods can be imprecise, and at times inaccurate, 
the maximum possible accuracy for the field estimates may be 
much <100%. Reported within-laboratory error rates for sedi-
mentation methodologies (pipette and hydrometer) range from 
0 to 6% with higher absolute differences in sand and clay (6 and 
−4%, respectively) then silt (–1%) texture classes (Kettler et al., 
2001). Furthermore, traditional laboratory techniques under es-

Table 1. Previous studies comparing soil texture-by-feel to laboratory-derived particle-size analysis.

 
Location

Sample  
size

Number of 
people

Years 
completed

 
Soil type

 
Training

 
Source

Maryland, U.S. 598 many 1955–1970 127 profiles, 38 soil series USDA-SCS soil survey (Foss et al., 1975)

Wales, U.K. 184 4 1973–1975 47 profiles 38 series England and Wales Soil Survey (Hodgson et al., 1976)

Arizona, U.S. 25 36 1982 20 series SCS (27), USFS (7), BLM (2) 
NCSS soil survey

(Post et al., 1986)

Nigeria 450 Unknown 1977–1982 Multiple pedons Unknown (Akamigbo, 1984)

Nigeria 100 2 Multiple pedons Soil science graduates w/basic 
training

(Ogunkunle, 1993)

Nigeria 100 2  < 1999 Multiple pedons Soil science graduates w/basic 
training

(David, 1999)

Arizona, U.S. 20 129 1997–2004 Multiple pedons College students, 4 wk (Post et al., 2006)

Arizona, U.S. 15 115 1983–1987 Multiple pedons College students, 3 wk and end 
of semester

(Levine et al., 1989)

Continental, U.S. 1002 ~209  < 2002 209 Pedons NCSS trained (Rawls and Pachepsky, 2002)

Australia 19,500 many  < 2007 Multiple pedons Trained soil scientists ASRIS database 
(Minasny et al., 2007)

Germany 3896 8  < 2016 728 sites Unknown (Vos et al., 2016)

Western U.S. 155 40 2015–2016 75 Pedons Minimal, 1 d This Study

Namibia 346 7 2014 175 Pedons 3 d This Study

U.S./Global 237,068 many  < 2017  > 21,000 NCSS trained soil scientists This Study
Abbreviations: USDA, United States Department of Agriculture; SCS, Soil Conservation Service (now Natural Resources Conservation Service); 
USFS, United States Forest Service; BLM, Bureau of Land Management; ASRIS, Australian Soil Resource Information System; NCSS, National 
Cooperative Soil Survey, U.K., United Kingdom, and U.S., United States.

Table 2. Results of previous studies (see Table 1) which reported individual soil texture class accuracy of texture-by-feel compared 
with laboratory-derived particle-size analysis.

Previous Studies N†

Soil Texture Class Accuracy‡(%)

OA%§S LS SL SC SCL L SiL CL SiCL SiC C

Akamigbo, 1984 455 95 73 58 71 47 31 21 25 2 46 46 55

Foss et al., 1975 598 74 35 68 – 44 36 63 18 19 – 73 50

Post et al., 1986 25 86 44 83 – 30 26 59 – 36 – 36 46

Levine, 1989– 1¶ 15 81 – 48 – 33 27 19 50 41 47 48 39

Levine, 1989– 2¶ 30 81 50 48 – 35 27 17 – 33 31 47 45
Rawls and Pachepsky, 2002 1002 80 34 32 – 58 39 48 28 41 48 48 41

Minasny et al., 2007 # 17,979 75 41 50 14 22 27 44 25 21 17 74 –
† Sample Size.
‡  S,  sand; LS,  loamy sand; SL, sandy loam; SC, sandy clay; SCL,  sandy clay loam; L,  loam; SiL, silt loam; Si, silt; CL, clay loam; SiCL, silty clay 

loam; SiC, silty clay; c, clay.
¶ OA, Overall Accuracy is the percent correctly classified.
§ Levine 1, college course end of week 3; Levine 2, college course end of semester.
# Averaged from texture classes of Northcote (1971) based on Australian field texture classes (McDonald et al., 1998).
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timate clay in highly weathered oxide-rich tropical and volcanic 
ash soils which resist dispersion (Silva et al., 2015). No methods 
for particle-size analysis can serve as a universal benchmark as all 
methods (sedimentation, sieve, and laser diffraction) suffer from 
inherent biases based on particle shape, sphericity, density, chem-
ical composition, and pretreatment methods (Eshel et al., 2004).

Because soil science’s main objective is to obtain reliable 
information about the nature, properties, dynamics, and func-
tion of the soil (Brady and Weil, 2013; FAO, 2006), a basic 
requirement for attaining that objective is to reliably assess soil 
morphology through examining and describing field soil proper-
ties. Individuals who describe field soil properties come from a 
range of backgrounds. We have observed the level and training 
received by individuals completing field texture-by-feel estimates 
varies widely, including trained professionals with a degree in 
soil science, ecologists, or other scientific specialty with limited 
university soils experience, early career field scientists with no 
formal soils training, and citizen science observers whose soils 
background is difficult to evaluate. Considering that surface and 
subsurface soil texture is often the most useful soil property for 
interpreting soil potential (Nauman and Duniway, 2016), an im-
portant question persists regarding the accuracy of field based 
texture-by-feel estimates completed by individuals with different 
levels of training and experience.

There is increasing interest in using crowdsourcing and 
citizen scientists to collect and interpret natural resource infor-
mation (McKinley et al., 2017; Rossiter et al., 2015). Citizen 
science’s goal is to engage nonprofessionals in the process of gen-
erating and sharing scientific knowledge while expanding access 
to science-based interpretations. Even though citizen science has 
the potential to generate a great wealth of information, the reli-
ability of volunteer-produced data is often questioned compared 
with information collected by professionals (Riesch and Potter, 
2014). Furthermore, few projects have evaluated the accuracy 
and bias of professionally produced data within the same context 
as volunteer-produced data (Kosmala et al., 2016). While con-
firming overall education and experience of a citizen soil scientist 
is difficult, we suggest that they may be comparable with seasonal, 
early career field scientists (hereafter, simply called technicians) 
who often lack formal soils training and experience, although we 
acknowledge that some citizen scientists may possess advanced 
training and experience (such as a retired soil scientists) or be 
completely novice with no knowledge of the discipline.

The objectives of this study were to evaluate the accuracy 
texture-by-feel class estimates of mineral soil by individuals with 
differing levels of training and experience, and to propose a set 
of recommendations for improving these estimates. While previ-
ous studies of texture-by-feel class accuracy have evaluated pro-
fessional versus novice soil scientists (e.g., Levine et al., 1989), 
less is known about the accuracy of citizen-scientists, seasonal 
field technicians, or professionals from other disciplines that 
may possess limited training and experience using the texture-
by-feel method. Furthermore, there has been no comprehensive 
study on the relationship between laboratory-derived and field 

soil texture using the extensive (over 300,000 samples) U.S. 
National Cooperative Soil Survey soil characterization database 
(NCSS-SCD). We conducted analysis of observers by training 
level, including academically-trained soil scientists (National 
Cooperative Soil Survey), moderately-trained seasonal field 
technicians (U.S. Public Lands Assessment), and minimally-
trained citizen scientists (Namibia Rangeland Assessment). 
Taking advantage of recently generated datasets from the U.S. 
and Namibia, this study compares accuracy of texture-by-feel 
field estimates of texture class to laboratory-derived texture class 
to determine the reliability of texture-by-feel estimates by both 
professional NCSS soil scientists and seasonal technicians who 
were not academically trained soil scientists.

MATERIALS AND METHODS
Professional Soil Scientists: NCSS 
Characterization Dataset

The NCSS soil characterization database (NCSS-SCD) is a 
comprehensive database of soil information in the United States 
built and maintained by the Kellogg Soil Survey Laboratory 
(KSSL). The database contains pedon data from soil character-
ization analyses completed by the KSSL and cooperating labo-
ratories of soil samples collected from the 1920s to the present. 
Data for this study were queried from a Microsoft Access data-
base (http://ncsslabdatamart.sc.egov.usda.gov/, accessed 1 Jul. 
2017). While the NCSS-SCD is considered a global database 
(Fig. 1a), most pedons are located within the United States.

A subset of 243,898 soil horizon samples was selected from 
over 364,000 samples associated with 21,000 pedons (Fig. 1a). 
Primary criteria for the selected set included availability of both 
field texture-by-feel estimates and lab measured particle-size analy-
sis (PSA) of soil separates (sand, silt, and clay contents) based on 
KSSL protocols (Soil Survey Staff, 2014a). Texture classes were 
reduced from 24 detailed USDA classes (which includes subdi-
visions of sand and clay) to 12 soil texture classes commonly ref-
erenced in the USDA soil texture triangle (Soil Science Division 
Staff, 2017). Soils data were further reduced by excluding dupli-
cate information, samples with negatives values, soil depths greater 
than two meters, non-mineral soil horizons (e.g., O, R, W, and L), 
and texture data where the sum of sand, silt, and clay percentages 
did not equal 100% (c.f. Levi, 2017; Sequeira et al., 2014). Soil 
Order was queried from the NCSS-SCD using the KSSL correlat-
ed taxonomy when available or field-determined taxonomy when 
correlated taxonomy was unavailable. Historically, the standard 
methodology for PSA at KSSL includes passing through a 2-mm 
sieve, removal of plant material, and use of the pipet sedimentation 
method (Soil Survey Staff, 2014a), although multiple techniques 
are assumed to have been used because of the age and complex-
ity of the dataset. We further considered changes in texture class 
boundaries over the historical period of the NCSS-SCD, includ-
ing the modification of the clay fraction from 5 to 2 μm (Knight, 
1938) and the addition of the silt and loamy sand classes in 1951 
(Soil Survey Staff, 1955) over the life of the dataset; however, anal-
ysis of those early samples did not change our overall results.
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Early-Career Seasonal Technicians: U.S. Public 
Lands Assessment Dataset

Soils were sampled and field-textured across the Western 
United States from June to October in 2015 and 2016 as part of 
the U.S. Bureau of Land Management (BLM) assessment, inven-
tory, and monitoring programs (MacKinnon et al., 2011; Taylor 
et al., 2014). For selected BLM monitoring projects, technicians 
with no prior soils training received a 1-d soil profile description 
training texture-by-feel (including instruction following Thien, 
1979) using representative soil samples containing a range of soil 
textures of varying sand, silt, and clay content with known laborato-
ry-determined textures. Two to six weeks after training, these field 
technicians identified soil horizons and described soil properties for 
each horizon at locations across the Western United States. Forty 
individuals completed texture-by-feel at 75 different pedons (Fig. 
1b) for a total of 155 soil horizon samples (so that each individual 
uniquely described approximately 2‒5 pedons) from Wyoming, 
Colorado, Utah, New Mexico, and Nevada. Soil taxonomy was not 

determined. Laboratory determina-
tions were completed at the USDA-
ARS soil laboratory in Las Cruces, 
NM using the hydrometer method, 
with analysis completed in a constant-
temperature bath and not pretreated 
for organics and salts (Bouyoucos, 
1962; Soil Survey Staff, 2014a). A 
few drops of amyl alcohol were added 
as necessary to limit foaming on high 
organic matter samples.

Minimally-Trained  
Citizen Scientists:  
Namibia Rangeland 
Assessment Dataset

Seasonal field data collectors de-
termined soil texture-by-feel as part of 
a rangeland assessment study of com-
munal areas in Namibia and recorded 
in the citizen science‒Land Potential 
Knowledge System (LandPKS) 
Data Portal (Herrick et al., 2013; 
LandPotential.org, 2018). Texture 
was estimated using the field texture-
by-feel method as part of a rangeland 
assessment study of communal areas 
in Namibia in August 2014 using the 
LandPKS mobile application and 
methodology (Herrick et al., 2017). 
Training included an approximately 
1.5-h field texture-by-feel instruc-
tion led by the second author using 
samples from the area that had not 
been lab tested. Data collectors were 
encouraged to compare their esti-
mates and refer to the USDA ribbon 

chart (similar to Thien, 1979) throughout the collection period, 
but no additional formal training was provided. Field estimates were 
completed for five depths between August and September in 2014. 
Samples were collected at the 1- to 10- and 50- to 70-cm depths 
only, except where soil was <50 cm deep. This resulted in a total 
of 346 soil samples from 175 pedons (Fig. 1c). Soil class and tax-
onomy were not collected. Particle-size analysis was performed on 
the soil samples using the pipet methodology with no pretreatment 
for organics and salts (Day, 1965; Miller and Miller, 1987) by the 
Analytical Laboratory Services in Windhoek, Namibia. Two of the 
three Namibian field scientists had received no prior soils training, 
while one received a brief introduction to soils in an undergraduate 
college agronomy course.

Classification Assessment and Statistical Approach
Confusion matrix classification accuracy analysis was com-

pleted using the caret (Kuhn, 2008) and the psych (Revelle, 2011) 

Fig. 1. Spatial distribution of soil samples used in this study, include (a) the National Cooperative Soil Survey–
Soil Characterization Database (n = 243,898), (b) a select dataset from the U.S. federal lands–assessment, 
inventory, and monitoring program (n = 155), and (c) a citizen science based rangeland assessment study of 
communal areas in Namibia recorded in the Land Potential Knowledge System (n = 346).
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packages in R version 3.4 (R Core Team, 2016) to validate tex-
ture class agreement. The confusion matrix is a cross-tabulation 
of observed and predicted classes (Congalton and Green, 2008) 
from which overall accuracy, producer’s accuracy, user’s accuracy, 
and Kappa index are generated.

Overall accuracy (OA) represents the absolute number of 
texture-by-feel observations that match texture classes according 
to PSA-derived methods. User’s accuracy (UA) shows the pro-
portion of texture-by-feel classes that match a given PSA-derived 
class relative to the total number of estimated points of that tex-
ture class (error of commission). Producer’s accuracy (PA) is a 
measure of the proportion of PSA-derived soil texture classes 
correctly classified by the user relative to the total number of 
observed points within each PSA-derived texture class (error of 
omission). These indices were calculated as follows:

1
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where r is the number of texture classes, Eii is the sum of diago-
nal elements, N is the number of observations, Xii is the diagonal 
value for each class in one row, Xij is the sum of values in one 
row or column, and Xjj is the diagonal value for each class in one 
column. Both UA and PA were not reported for the Namibia 
and U.S. technician data sets as interpretation of UA and PA are 
often unreliable with smaller sample sizes and unbalanced class 
distribution (Congalton and Green, 2008). Kappa (k) was cal-
culated to account for unbalanced sample class distribution and 
measures classification accuracy after accounting for probability 
of chance agreement among the 12 texture classes. The kappa 
index is calculated with the number of texture classes, number 
of correctly classified samples, and the total number of classes 
(Congalton and Green, 2008) by:

P P
1 P  
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e
k

−
=

−
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where Po is the proportion of correctly classified samples, and Pe 
is the probability of random agreement. Kappa results can range 
from –1 to 1, with values <0.0 showing poor agreement, values 
between 0.0 and 0.2 represent slight agreement, values between 
0.2 and 0.4 represent fair agreement, values between 0.4 and 0.6 
represent moderate agreement, values between 0.6 and 0.8 repre-
sent substantial agreement, and values between 0.8 and 1.0 indi-
cate almost perfect agreement (Landis and Koch, 1977). Lower 
and upper Kappa (kL and kU) confidence intervals were defined 
at a = 0.05 (Revelle, 2011). We note that this classification of 
Kappa values is based on assumptions we are comparing to an 
absolute reference. As this is not the case for our study (Box 1), 
the results represent conservative estimates of accuracy.

Results were further evaluated based on near-class accuracy 
where adjacent texture classes were combined for accuracy of any 
given class. Because texture class is categorical, we developed a 
weighted matrix similar to Cohen (1968) based on each adja-
cent proximity classes of the USDA texture triangle, to find the 
adjacent-overall accuracy so that:

1
E
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N

r
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== ∑  [6]

where r is the number of texture classes, Eij is the sum of correct 
near class elements and N is the total number of observations. 
Weighted Kappa values (kw, kwL, and kwU) were similarly cal-
culated using an error matrix where adjacent class estimates were 
given the same weight as correct classes (Cohen, 1968). As an 
example, an estimated texture-by-feel of Sandy Loam would be 
grouped with Sandy Clay Loam, Loam, and Loamy Sand and 
then compared against Sandy Loam PSA-derived class. For some 
texture classes, specifically the Loam and Clay Loam classes, our 
adjacent-overall accuracy analysis expands a correct result to 
larger portion of the texture triangle compared with other tex-
ture classes. While not considered in this study, including clay 
percentage estimates combined with the modified-centroid meth-
od (Levi, 2017) would help reduce this disparity.

To explore hand-texturing error among datasets, we further 
evaluated results by reviewing the texture-by-feel methodology. 
The technicians (both from Namibia and the U.S.) were trained 
using Thien’s flow diagram (Thein, 1979) which begins with 
manipulating the soil sample into a cast (ball), followed by a rib-
bon, and concluded with identifying grittiness. Feedback from 
public land assessment trainings included comments that novice 
observers struggle with assessing grittiness level as well as ribbon 
length. We calculated the conditional probability on soil samples 
where the probability of an incorrect grittiness class given a cor-
rect ribbon length class is:

( )
( )

=P Incorrect Grittiness|Correct ribbon  

P wrong grittines and correct ribbon
 

N
  [7]

where N is total number of observations not including the Sand, 
Loamy Sand, or Silt texture classes. We also calculated the con-
ditional probability on soil samples where the probability of an 
incorrect ribbon given a correct grittiness class is:

( )
( )

=P Incorrect Ribbon|Correct Grittiness   

P     wrong ribbon and correct grittiness
N

  [8]

where N is total number of observations not including the Sand, 
Loamy Sand, or Silt texture classes.

RESULTS AND DISCUSSION
Summary of Texture Class Accuracy

The overall (absolute) accuracy (OA) of professional soil sci-
entists from the NCSS-SCD database was 66% (k = 0.61, kL = 
0.61, kU = 0.62) and increased to 91% (kw = 0.82, kwL = 0.81, kwU 



www.soils.org/publications/sssaj 1531

= 0.83) when including adjacent texture-by-feel classes (Fig. 2 and 
3; Table 3). Overall accuracy of the Western U.S. dataset was 31.8% 
(k = 0.23, kL = 0.18, kU = 0.27), and the OA for the Namibia da-
taset was 40.5% (k = 0.12, kL = 0.08, kU = 0.16). Only six texture 
classes were identified by laboratory analysis on the Namibia data-
set, thus inflating the OA percentage. Including adjacent texture-
by-feel classes, the public land assessment datasets results increased 
to 78% (kw = 0.42, kwL = 0.35, kwU = 0.49) for the U.S. set and 
72.5% (kw = 0.07, kwL = 0.17, kwU = 0.28) for the Namibia set 
(Fig. 2 and 4; Table 4). As explained in Box 1, the maximum pos-
sible absolute accuracy is unknown and may be much <100%.

The overall absolute accuracy for professional soil scientists 
(NCSS-SCD) was highest where one particle-size fraction domi-

nated the sample, such as Clay (74%) and Sand (73%). A similar 
pattern was seen with UA of Silt (82%), Clay (74%), and Sand 
(78%). Silt texture class were estimated very poorly (PA = 16%) 
where 77% of the time Silt PSA was estimated as Silt Loam, with a 

Fig. 2. Accuracy metrics for soil texture-by-feel compared with 
laboratory-derived particle-size analysis. Analysis of observers by 
training level include academically-trained career soil scientists 
(National Cooperative Soil Survey), moderately-trained seasonal field 
technicians (U.S. Public Lands Assessment, Inventory, and Monitoring 
program), and minimally-trained citizen scientists (Namibia Rangeland 
Assessment). OA is the overall accuracy, OAadj is the overall accuracy 
when combining adjacent texture classes for from the USDA texture 
triangle (see text), k is kappa which takes into account of unbalanced 
class size, and kw is the weighted kappa with similar weight as the 
OAadj (see text). Bars represent upper and lower kestimates (a = 0.05).

Table 3. Confusion matrix for texture-by-feel validation with the NCSS-SCD (n = 233,808).

Hand 
texture†

Laboratory texture†

UA%‡S LS SL SC SCL L SIL CL SICL SIC C SI
S 9746 1405 1093 23 25 60 76 8 5 4 7 6 78
LS 1979 3136 1391 1 44 62 59 9 5 0 5 1 48
SL 1322 2409 18108 29 656 2221 1301 101 67 11 59 39 69
SC 2 3 45 270 236 24 2 67 16 53 114 0 33
SCL 26 79 2191 225 3801 825 80 365 95 30 149 0 50
L 110 187 4757 22 1004 17167 3023 1823 360 72 199 11 60
SIL 49 102 1026 2 96 3986 41652 1165 4118 422 251 1094 77
CL 18 27 668 117 1406 3790 802 10812 1275 411 1383 1 53
SICL 42 41 174 10 130 1427 4020 2668 21232 2800 1252 16 62
SIC 4 1 24 9 48 105 217 595 2000 8787 2423 3 61
C 9 6 88 232 378 227 118 1663 963 2303 16881 7 74
SI 0 0 1 0 0 3 35 0 4 3 0 187 82
PA%‡ 73 42 61 28 49 58 81 57 70 59 74 16 OA‡= 66.3%

k‡ = 0.61
†  S, sand; LS, loamy sand; SL, sandy loam; SC, sandy clay; SCL, sandy clay loam; L, loam; SiL, silt loam; Si, silt; CL, clay loam; SiCL, silty clay 

loam; SiC, silty clay; C, clay; Si, silt.
‡ UA is user’s accuracy, PA is producer’s accuracy, OA is percent correctly classified, and k equals kappa statistic.

Table 4. Confusion matrix for texture-by-feel validation of 
early career-seasonal field scientists sampling in the Western 
U.S. public land assessments and citizen scientists sampling in 
Namibia communal areas.

Dataset
Hand 

Texture†

Laboratory Texture †

S LS SL SCL L SIL CL SICL C

Western S 3 1 1 0 0 0 0 0 0

U.S. LS 2 4 5 0 0 0 0 0 0

SL 2 4 21 0 9 1 0 0 0

SC 0 0 1 2 4 1 0 0 0

SCL 0 0 6 1 6 1 0 0 0

L 0 0 2 0 2 7 0 0 0

SIL 0 0 0 0 0 8 2 1 0

CL 0 0 1 1 9 5 2 1 0

SICL 0 0 0 0 1 3 1 4 6

SIC 0 0 1 0 4 3 0 1 0

C 0 0 0 0 5 2 1 2 4

OA‡ = 31.8%,  
k‡ = 0.23

Namibia S 120 0 0 0 0 0 – – –

LS 84 7 3 0 1 0 – – –

SL 48 6 8 0 0 2 – – –

SCL 4 1 4 0 0 0 – – –

L 0 0 0 0 0 0 – – –

SIL 8 6 1 0 0 1 – – –

CL 3 0 8 1 0 2 – – –

SICL 1 2 8 0 0 4 – – –

SIC 0 0 1 0 0 1 – – –

C 0 0 1 0 0 0 – – –

OA‡ = 40.5%,  
k‡ = 0.12

†  S, sand; LS, loamy sand; SL, sandy loam; SC, sandy clay; SCL, sandy 
clay loam; L, loam; SiL, silt loam; Si, silt; CL, clay loam, SiCL,  silty 
clay loam; SiC, silty clay; C, clay; Si, silt.

‡ OA equals percent correctly classified, and k equals kappa statistic.
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near-class accuracy of 93% for Silt. Sandy Clay also had low agree-
ment of 28% with similar agreement for Sandy Clay Loam and 
Clay (24 and 25% respectively). Silt and Sandy Clay classes repre-
sented the smallest overall number of samples in the database (0.6 
and 0.4% respectively), while Silt Loam represented 22% of the to-
tal number of NCSS-SCD samples. Loamy Sand also had relative-
ly high confusion, with 42% PA with Sandy Loam and Sand being 
the most common misclassification (32 and 19%, respectively).

The Namibia and U.S. technician’s assessment samples con-
tained relatively low sample sizes within most texture classes—the 
exception being the Sand texture class from the Namibia set (268 
samples which was 85% of total dataset). The unevenness of texture 
classes reflected monitoring objectives targeting certain land types 
and not necessarily because of flaws in data collection. Sand showed 
the highest PA (45%) followed by sandy loam (40%), loamy sand 
(35%), and clay loam (33%), Loam texture class was very poorly es-
timated (5% PA) from the 36 Loamy PSA-derived classes, although 
loam showed a near-class accuracy of 63%. Loamy Sand and Sandy 
Loam had a UA of 38 and 30%, respectively and 65 and 60% near-
class accuracy. Although we note that UA and PA accuracy metrics 
are difficult to interpret given these smaller samples size.

Analysis and Interpretation of Misclassification
As the soil texture-by-feel methodology used to train techni-

cians and university students in the U.S. has typically been modeled 
after the Thien (1979) flow diagram (i.e., Moorberg and Crouse, 
2017), we tested the probability of observers matching texture class 
through the correct ribbon length class and grittiness class when an 
incorrect texture class was estimated (Fig. 5). This analysis was com-
pleted for the NCSS-SCD and a combined Namibia and Western 
U.S. dataset. As this matrix only contains nine texture classes, any 
results (including PSA and texture-by-feel) of Sand, Loamy Sand, 
and Silt classes were omitted from the analysis. We found minimal 
differences between grittiness and ribbon length from the NCSS-
SCD database (41 and 39%) and significant difference from the 
seasonal technician’s database (17 and 37%). This suggests that 
when seasonal field scientists misclassify texture class, it was more 
likely because of an error in estimating ribbon length than gritti-
ness. Completing the grittiness check prior to estimating ribbon 
length could improve these results; however, other methods which 
help refine the clay-texture classes—such as implementing a worm-
and-bend method (FAO, 2006; Landon, 1988)—or requesting 
percentage of clay estimation could also improve results.

Fig. 3. Classification agreements for individual texture classes for estimates by professional soil scientists illustrating the texture similarity in miss-
classified observations. Red outline represents the laboratory validation texture group. Plots include samples from National Cooperative Soil Survey. 
For each texture class, N is the sample size, PA is the producer accuracy, and value in parenthesis is the producer’s accuracy-adjacent value.
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We also evaluated classification accuracy of soil texture 
classes of mineral horizons by Soil Order for the professional soil 
scientist dataset (Table 5). The highest accuracy was found for 
Alfisols, Entisols, Ultilsols, and Vertisols (72, 68, 71, and 70%, 
respectively) while, Andisols, Aridisols, Gelisols, and Oxisols 
showed the lowest overall accuracy (44, 46, 34, and 41%). 
Compared with the overall database, PA was noticeably lower for 
the Clay texture class from Andisols, Histosols, and Spodosols; 
the Sand class in Aridisols; the Loam class from Gelisols, Oxisols, 
and Vertisols; and the Silt Loam from Aridisols, Mollisols, and 
Vertisols. Overall accuracy was prominently higher for Loamy 
Sands from Enitsols and Ultisols and for the Clay class of 
Vertisols. The kappa values generally follow overall accuracy for 
individual Soil Orders (Table 5, Supplemental Tables S1-S12).

Aridisols results confirm previous analysis that soils with ex-
cessive salts (such as calcium carbonate, gypsum, or other salts) 
complicate the soil’s feel (Hodgson et al., 1976). This leads to 
either: underestimation of clay content because they reduce the 
stickiness of clays and dilute the volume of silicate mineral matter 
in some cases, or overestimation of clay where carbonate crystals 
(which are silt- to clay-size) cannot be readily distinguished by feel 
from clay particles while other salts can disperse clay particles lead-
ing to inflated clay estimates. Similarly, soil samples with high or-
ganic matter (such as Histosols and some surface horizons) impart 
a greasy silty feel, reducing coherence of clay and causing an un-
derestimation of clay (Hodgson et al., 1976, Vos et al., 2016). Not 
properly sorting soil through a 2-mm sieve may also be a source of 
error because of not removing coarse particles > 2-mm or by not 

Fig. 4. Classification agreement for individual texture classes for estimates by the Namibia and Western U.S. seasonal field scientists illustrating 
the texture similarity in miss-classified observations. Red outline represents the laboratory validation texture group.
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properly breaking up clay aggregates which require more vigorous 
kneading. Often, sticky smectitic clays (which resists deformation 
and make longer ribbons) can feel different from the less sticky mi-
caceous or kaolinitic clays (which make shorter ribbon).

Lower Kappa values of Oxisols and Andisols highlight a limi-
tation of the dataset as well as issues of texture-by-feel estimates 
from tropical soils, which comprise 0.5 and 2%, respectively of 
the NCSS-SCD. Accuracy of these two soil orders is further com-
plicated as even traditional laboratory techniques under estimate 
clay in the highly weathered oxide-rich tropic and glassy volcanic 
soils. Clays form stable silt- and sand-sized particles through bond-
ing of oxides and organics, electrostatic attraction of oxides and 
non-crystalline minerals, or the irreversible drying of amorphous 
minerals (Silva et al., 2015). Soil samples resist dispersion with 
standard laboratory techniques as well as prove difficult to break 
down by hand because of the high degree of micro aggregate stabil-
ity. Additionally, Andic soils exhibit a smeary feel compared with 
the more common sticky feel. Even with these difficulties, previous 
work has shown that field texture-by-feel estimates provide reliable 
estimates of texture class (Nettleton et al., 1999).

While Vertisols showed relatively high overall accuracy, 
Kappa values were low because of the Kappa value reflecting an 
equal probability of each texture class being correct even though 
Vertisols are mostly clay textures. Errors because of clay miner-
alogy may be reduced through calibration with locally-sourced 
soils where mineralogy is relatively uniform, supplemented by an 
additional (e.g., color- or landscape position-based) indicators of 
mineralogy (McDonald et al., 1998).

Comparison with Past Studies
Our analysis showed that texture-by-feel estimates by profes-

sional soil scientists in the U.S. were improved than those previous-
ly reported in the literature (see Tables 2 and 3). This was generally 
the result of higher texture class PA than from previous studies, 
including double-digit differences in the Silty- and Loamy-texture 
classes. The largest proportion of this difference was driven by 
Silty Clay Loam and Silt Loam texture classes, which comprise a 
large proportion of samples from the database. One of the larg-
est differences in class agreement was in the Loam class where PA 
from previously reported accuracy of 26 to 39% (Table 2), while 
the NCSS-SCD showed a 58% PA. Sandy Clay class accuracy 
was not previously well reported because of its rarer occurrence in 
natural systems, as Sandy Clay PSA-derived samples make up only 
contains 0.4% of the total number of samples in the NCSS-SCD. 
Silt was also poorly estimated in the NCSS-SCD database, and 
this may also be a result of its rarity or because it does not appear in 
the standard Thien (1979) flow chart.

We found that technicians performed similarly to previously 
reported university student assessments (Levine et al., 1989). Sand 
texture class agreement was lower than past studies, driven by the 
overwhelming number of sandy textures in the Namibia dataset. 
We believe Namibia observers may have tried to reflect real dif-
ferences in sand content that were insufficient to result in an ab-
solute texture class change as well as a desire to second guess the 
lack of variability in the rangeland assessment study. This poor 
agreement suggests that secondary checks could be added to the 
Thien (1979) flow chart to feel differences between Sand and 
Loamy Sand texture classes. For example Loamy Sand will usually 

Fig. 5. Probability of either ribbon length or grittiness being correct when texture-by-feel is misclassified. Based on the Thien (1979) flow diagram 
where soil sample was able to manipulate into a ribbon first and then check grittiness. Samples hand- or lab- textured as Silt, Loamy Sand, and 
Sand texture classes were omitted from this probability analysis.
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stain fingers because of silt and clay components while Sand will 
not stain fingers when washed with water. This potential source of 
limited-range bias merits further investigation. Dominance of one 
size fraction may facilitate accurate estimates of the Sand and Clay 
texture classes because they are end members of the texture triangle 
and checks for these fractions are reliably definitive when a sample 
is comprised of one size fraction. We believe the Silt class continues 
to be difficult to identify because inexperience, its rarer occurrence 
in nature, and the absence of Silt on many texture flow charts.

Implications for Citizen Science and Non-
Professional Soil Scientists

Results confirm findings from previous studies showing soil 
texture-by-feel estimates often differ from laboratory estimates, 
and that the differences are generally more frequent for individu-
als with less experience. While the results of the Namibia dataset 
showed lower agreement than for the professional soil scientists 
(OA = 41%, k = 0.12 based on assumption of correct laboratory 
results, see Box 1), the level of accuracy required depends on ob-
jectives. Even the least accurate field estimates may be sufficient 
for some applications, such as determining whether the soil is too 
sandy for a rain-fed home garden or for making adobe bricks.

While absolute accuracy was low (31.8%) with only slight 
agreement (k = 0.23) for the U.S. public lands inventory and 
monitoring dataset, accuracy increased to 78% (OAadj) when 
combining adjacent texture classes, with moderate agreement 
(kw = 0.42). Here, OAadj of texture class is higher than OA dem-
onstrated by professional soil scientists (66%). For inventory and 
monitoring programs, soil texture is considered important to ver-
ify soil properties to match soil class or soil properties (Brungard 

et al., 2015; Young et al., 1991) as well as for identification of the 
ecological site (Duniway et al., 2010). When texture determina-
tions are used for soil identification, often the relative texture 
differences of surface and subsurface layers (not evaluated here) 
may be more important than absolute accuracy. Additional re-
search is needed to determine the relative and absolute accuracy 
required for soil classification in different landscapes.

In traditional laboratory and field research, data quality is 
typically evaluated based on multi-dimensional measures of com-
pleteness, consistency, and accuracy (Pipino et al., 2002; Whitney 
et al., 1998). In addition to these criteria, challenges remain re-
garding the interpretation and management of data generated by 
seasonal field technicians, and other individuals, such as citizen 
scientists, without extensive training and experience (Newman et 
al., 2012). Determining how to interpret and integrate data from 
individuals with different levels of experience into natural resource 
research presents real challenges (Rossiter et al., 2015), and more 
research is needed on how to treat this disparity in data quality.

IMPROVINg FIELD TExTURE-BY-FEEL ESTIMATES
Where more accurate estimates are required, our analyses 

support the idea that accuracy can be improved. In this section, 
we propose three strategies for improving the accuracy of field 
texture-by-feel determinations: training, calibration, and decision 
support tools.

Training
Both our review of the literature and our own results sup-

port the hypothesis that training increases accuracy. We found 
accuracy was highest for the professional soil scientists, inter-

Table 5. Summary of the National Cooperative Soil Survey – Soil Characterization Database accuracy of mineral horizon texture-
by-feel agreement with laboratory-derived particle-size analysis by Soil Order. Percentages represent user accuracy within each 
class. Class estimates under 5% of total samples by Soil Order were omitted from table. Detailed confusion matrix for each soil 
order are provided in supplementary materials, Tables S1-S12

N†

Soil Texture Class User Accuracy ‡ (%)

OA¶ k¶S LS SL SC SCL L SIL CL SICL SIC C Si

Soil Order §¶

Alfisols 70237 70 45 65 – – 61 85 63 74 – – – 72 0.67

Andisols 4959 – – – – 13 37 65 13 42 – 27 – 44 0.30

Aridisols 10314 51 34 58 – – 45 47 41 34 21 48 – 46 0.37

Entisols 13375 82 56 63 – – 52 78 41 55 53 45 – 68 0.61

Gelisols 393 67 33 33 – – 21 54 – 35 – – – 34 0.15

Histosols 371 75 35 63 – – 30 72 24 61 47 33 – 54 0.47

Inceptisols 24589 64 38 64 – 44 58 72 42 55 42 56 – 60 0.51

Mollisols 49914 74 37 54 32 36 55 73 52 67 58 55 – 60 0.53

Oxisols 1157 – – 16 5 6 2 42 10 – – 58 15 41 0.13

Spodosols 5526 82 32 70 – 17 33 – – – – 27 – 62 0.50

Ultisols 26470 67 54 65 – – 61 88 56 71 55 75 39 71 0.66

Vertisols 4596 – – – – 32 15 48 28 49 46 87 – 70 0.44

Full Database

Overall Accuracy 243,898 73 42 61 28 49 58 81 57 70 59 74 16 66 0.61
† Sample size.
‡  S = sand, LS = loamy sand, SL = sandy loam, SC = sandy clay, SCL = sandy clay loam, L = loam, SIL = silt loam, SI = silt, CL = clay loam, SICL = 

silty clay loam, SIC = silty clay, C = clay, Si = silt.
§ OA = percent correctly classified, and k = kappa statistic.
¶ USDA soil taxonomy (Soil Survey Staff, 2014b).
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mediate for those with a full day of soil profile description (in-
cluding texture) training, and lowest for those with just 1.5 h of 
training. Direct comparison of these three datasets is potentially 
confounded by the fact that the results are based on laboratory 
determinations from three different laboratories, and that the 
1.5-h training group was also working across landscapes with 
relatively homogenous (sandy) soils, which may have led to a 
tendency to assign real, but minor differences in texture to differ-
ent texture classes. Finally, additional training in estimating the 
percentage of clay would greatly benefit interpretation of soils 
occurring near boundaries of texture classes.

Calibration
Accuracy of field texture-by-feel estimates is recognized to de-

pend on both the observers’ general experience applying the method 
and their knowledge of how to adjust for locally encountered con-
ditions that may modify determinations (Landon, 1988). Working 
with several partners`(Current partners include: the Bureau of Land 
Management [BLM], Natural Resources Conservation Service [NRCS], 
US Geological Survey [USGS], USDA-ARS, Great Basin Institute, World 
Agroforestry Centre [ICRAF], Regional Centre for Mapping of Resources 
for Development [RCMRD], and the Lewa Conservancy in Kenya.), the 
authors of this study have begun to establish a set of calibration 
soils throughout the world. We found that building sets of a dozen 
diverse soils from the local area have been extremely helpful for in-
creasing observer confidence, and accuracy increases as trainees work 
through the sample set. Availability of these calibration soils has 
many advantages. First, these soils reduce reliance on professional 
soil scientists for training. Second, calibration soils increase accuracy 
as observers are comparing estimates to laboratory determinations 
rather than those of another individual. Third, calibrating to known 
textured soils provide a focal point discussing supplementary cues, 
and how the relative importance of these cues varies across texture 
classes and soil mineralogy. Finally, the samples can be made avail-
able to individuals who are unable to participate in a formal training.

Decision Support Tools
Despite hand texturing being considered a fundamental skill, 

there is no generally accepted international field methodology. 
The Soil Survey Manual (Soil Science Division Staff, 2017) simply 
defines texture classes based on the PSA-derived limits rather than 
providing a specific field methodology, while the FAO’s Guidelines 
for Soil Profile Description (FAO, 2006) present the worm-and-
bend method following Landon (1988). In practice however, nu-
merous ad hoc field systems are used by organizations involved in 
soil investigation, and many groups have developed their own id-
iosyncratic methods. This has led to a general belief that no meth-
odology can be applied globally to all soils and that individual sci-
entists must work out their own ability to reliably estimate texture. 
As a result, lack of standardized methodology provides challenges 
for observers who may lack the resources (e.g., training and calibra-
tion soils) to develop a personalized soil texture framework.

One group that would benefit from a more robust soil texture 
decision support framework is citizen scientists. Because many volun-

teer citizen-scientists lack training, calibration, and experience, we sug-
gest further controls and checks could be added to improve their tex-
ture-by-feel estimates. For example, if the goal of a citizen scientist goal 
is to identify a soil unit class (such as a soil series), in many locations 
an individual would only need to identify relative finer texture with 
depth to indicate the presence of an argillic horizon, instead of clas-
sifying texture class correctly. Furthermore, if the goal is to increase ac-
curacy of texture-by-feel estimates, we propose citizen scientists could 
be guided with additional optional or redundant soil texture-by-feel 
methods within a stepwise flow diagram to differentiate between simi-
lar classes. We suggest that a suite of tools and technology delivered 
through mobile apps can generate these iterative manipulative checks 
to improve texture-by-feel estimates. However, there will probably be 
no substitution for hand-on training with known textured soils and 
periodic re-calibration.

CONCLUSIONS
Accurate descriptions of soil properties are important to reli-

ably characterize the nature, properties, dynamics, and function of 
the soil. Here we have shown that professional soil scientists predict 
soil texture classes with higher absolute accuracy then previously 
stated in the literature. Our results demonstrate that seasonal field 
scientist estimate texture-by-feel with similar accuracy to university 
students with limited training. These findings underscore the need 
for practicing hand texture against known samples and calibrating 
for localized variability in soil texture. We have provided a discussion 
of options for increasing the accuracy of field soil texture predictions 
by citizen scientists, including training, calibration, and decision 
support tools that go beyond simple dichotomous keys. Future work 
should focus on standardized field techniques as well as additional 
manipulative checks on Loamy to Silty texture classes. Results sup-
port both continued investments in citizen science, and use of tools 
(such as the Land-Potential Knowledge System) designed to in-
crease observer accuracy with training provided through universally 
available mobile apps.

ACKNOWLEDgMENTS
This research was based on work supported by the United States Agency for 
International Development (USAID), USDI-Bureau of Land Management, 
and the USDA-Agricultural Research Service. We are grateful to the many 
USDA-NRCS employees who contributed to the Soil Survey database, 
BLM field staff and seasonal technicians who provided samples for analysis, 
and to A. Beh for his assistance coordinating the Land-Potential Knowledge 
System (LandPKS) project. Special thanks to N. Stauffer and S. DiStefano 
for organizing BLM samples for analysis; to C. Garton for help editing the 
manuscript; and to two reviewers who’s comments helped improve the 
manuscript. Use of trade, product, industry, or ðrm names is for descriptive 
purposes only and does not imply endorsement by the U.S. government.

REFERENCES
Akamigbo, F. 1984. The accuracy of field textures in a humid tropical environment. 

Soil survey and land evaluation 4: 63-70.
Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size 

analyses of soils. Agron. J. 54:464–465. doi:10.2134/agronj1962.000219620
05400050028x

Brady, N.C., and R. Weil. 2013. The Nature and properties of soils. Pearson New 
International Edition. Pearson Higher Ed, New York, NY.

Brungard, C.W., J.L. Boettinger, M.C. Duniway, S.A. Wills, and T.C. Edwards. 2015. 
Machine learning for predicting soil classes in three semi-arid landscapes. 



www.soils.org/publications/sssaj 1537

Geoderma 239:68–83. doi:10.1016/j.geoderma.2014.09.019
Cohen, J. 1968. Weighted kappa: Nominal scale agreement provision for scaled 

disagreement or partial credit. Psychol. Bull. 70:213–220. doi:10.1037/h0026256
Congalton, R.G. and K. Green. 2008. Assessing the accuracy of remotely sensed data: 

Principles and practices. CRC Press, Bocan Raton, FL.
David, O.O. 1999. Improvement in field texture accuracy for sustainable agriculture. 

J. Sustain. Agric. 15:61–68. doi:10.1300/J064v15n02_07
Day, P. R. 1965. Particle Fractionation and Particle-Size Analysis. In: C.A. Black, 

editor, Methods of Soil Analysis. Part 1. Physical and Mineralogical Properties, 
Including Statistics of Measurement and Sampling, Agron. Monogr. 9.1. ASA 
and SSSA, Madison, WI. p. 545-567. doi:10.2134/agronmonogr9.1.c43

Duniway, M.C., B.T. Bestelmeyer, and A. Tugel. 2010. Soil processes and properties 
that distinguish ecological sites and states. Rangelands 32:9–15. doi:10.2111/
Rangelands-D-10-00090.1

Eshel, G., G. Levy, U. Mingelgrin, and M. Singer. 2004. Critical evaluation of the use 
of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 
68:736–743. doi:10.2136/sssaj2004.7360

FAO. 2006. Guidelines for soil description. Food & Agriculture Organization, 
Rome, Italy.

Foss, J., W. Wright, and R. Coles. 1975. Testing the accuracy of field textures. Soil Sci. 
Soc. Am. J. 39:800–802. doi:10.2136/sssaj1975.03615995003900040051x

Franzmeier, D., and P. Owens. 2008. Soil texture estimates: A tool to compare 
texture-by-feel and lab data. J. Nat. Resour. Life Sci. Educ. 37:111–116.

Gee, G. W., and J. W. Bauder 1986. Particle-size Analysis. In: A. Klute, editor, 
Methods of Soil Analysis: Part 1. SSSA Book Ser. 5.1. SSSA and ASA, 
Madison, WI. p. 383-411. doi:10.2136/sssabookser5.1.2ed.c15

Herrick, J.E., J.W. Karl, S.E. McCord, M. Buenemann, C. Riginos, E. Courtright, J. 
Van Zee, A.  C. Ganguli, J. Angerer, J. R. Brown, D,W. Kimiti, R. Saltzman, A. 
Beh, and B. Bestelmeyer. 2017. Two new mobile apps for rangeland inventory 
and monitoring by landowners and land managers. Rangelands 39:46–55. 
doi:10.1016/j.rala.2016.12.003

Herrick, J.E., K.C. Urama, J.W. Karl, J. Boos, M.-V.V. Johnson, and K.D. Shepherd, J. 
Hempel, B.T. Bestelmeyer, J. Davies, J. Larson Guerra, C. Kosnik, D.W. Kimiti, 
A. Losinyen Ekai, K. Muller, L. Norfleet, N. Ozor, T. Reinsch, J. Sarukhan, 
and Larry T. West. 2013. The global Land-Potential Knowledge System 
(LandPKS): Supporting evidence-based, site-specific land use and management 
through cloud computing, mobile applications, and crowdsourcing. J. Soil 
Water Conserv. 68:5A–12A. doi:10.2489/jswc.68.1.5A

Hodgson, J., J. Hollis, R. Jones, and R. Palmer. 1976. A comparison of field estimates 
and laboratory analyses of the silt and clay contents of some West Midland 
soils. J. Soil Sci. 27:411–419. doi:10.1111/j.1365-2389.1976.tb02011.x

Kettler, T., J.W. Doran, and T. Gilbert. 2001. Simplified method for soil particle-size 
determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65:849–
852. doi:10.2136/sssaj2001.653849x

Knight, H.G. 1938. New size limits for silt and clay. Soil Sci. Soc. Am. Proc. 2:592.
Kosmala, M., A. Wiggins, A. Swanson, and B. Simmons. 2016. Assessing data quality 

in citizen science. Front. Ecol. Environ 14:551–560. doi:10.1002/fee.1436
Kuhn, M. 2008. Caret package. J. Stat. Softw. 28:1–26.
Landis, J.R. and G.G. Koch. 1977. The measurement of observer agreement for 

categorical data. Biometrics: 159-174.
Landon, J. 1988. Towards a standard field assessment of soil texture for mineral soils. 

Soil survey and land. Evaluation 8:161–165.
LandPotential.org. 2018. Land Potential Knowledge System Data Portal. Available 

online at http://landpotential.org/landpks (accessed 1 Aug. 2018).
Levi, M.R. 2017. Modified centroid for estimating sand, silt, and clay from soil 

texture class. Soil Sci. Soc. Am. J. 81:578-588. doi:10.2136/sssaj2016.09.0301
Levine, S., D.F. Post, and T. Ellsworth. 1989. An evaluation of student proficiency in 

field estimation of soil texture. J. Agron. Educ. 18:100–104.
MacKinnon, W.C., J.W. Karl, G.R. Toevs, J.J. Taylor, S. Karl, C.S. Spurrier, and J.E. 

Herrick. 2011. BLM core terrestrial indicators and methods. U.S. Dep. of the 
Interior, Bureau of Land Management, National Operations Center Denver, CO.

McDonald, R.C., R. Isbell, J.G. Speight, J. Walker and M. Hopkins. 1998. Australian 
soil and land survey: Field handbook. CSIRO publishing, Clayton, Australia.

McKinley, D.C., A.J. Miller-Rushing, H.L. Ballard, R. Bonney, H. Brown, S.C. 
Cook-Patton, D.M. Evans, R.A. French, J.K. Parrish, T.B. Phillips, S.F. 
Ryan, L. A. Shanley, J.L. Shirk, K. F. Stepenuck, J. F. Weltzin, A. Wiggins, 
O.D. Boyle, R.D. Briggs, S.F. Chapin III, D.A. Hewitt, P.W. Preuss, M.A. 
Soukup. 2017. Citizen science can improve conservation science, natural 
resource management, and environmental protection. Biol. Conserv. 
208:15–28. doi:10.1016/j.biocon.2016.05.015

Miller, W., and D. Miller. 1987. A micro‐pipette method for soil mechanical analysis. 

Commun. Soil Sci. Plant Anal. 18:1–15. doi:10.1080/00103628709367799
Minasny, B., A.B. McBratney, D.J. Field, G. Tranter, N.J. McKenzie, and D.M. Brough. 

2007. Relationships between field texture and particle-size distribution in 
Australia and their implications. Soil Res. 45:428–437. doi:10.1071/SR07051

Moorberg, C.J. and D.A. Crouse. 2017. An open-source laboratory manual for 
introductory, undergraduate soil science courses. Natural Sciences Education 
46: 170013. doi: doi:10.4195/nse2017.06.0013

Nauman, T.W., and M.C. Duniway. 2016. The automated reference toolset: A soil-
geomorphic ecological potential matching algorithm. Soil Sci. Soc. Am. J. 
80:1317–1328. doi:10.2136/sssaj2016.05.0151

Nettleton, W., S. Brownfield, R. Burt, E. Benham, S. Baird, K. Hipple, et al. 1999. 
Reliability of Andisol field texture clay estimates. Soil Horiz. 40:36–49. 
doi:10.2136/sh1999.2.0036

Newman, G., A. Wiggins, A. Crall, E. Graham, S. Newman, and K. Crowston. 2012. 
The future of citizen science: Emerging technologies and shifting paradigms. 
Front. Ecol. Environ 10:298–304. doi:10.1890/110294

Northcote, K.H. 1971. Factual key for the recognition of Australian soils.
Ogunkunle, A. 1993. Soil in land suitability evaluation: An example with oil palm in 

Nigeria. Soil Use Manage. 9:35–39. doi:10.1111/j.1475-2743.1993.tb00925.x
Pipino, L.L., Y.W. Lee, and R.Y. Wang. 2002. Data quality assessment. Commun. 

ACM 45:211–218. doi:10.1145/505248.506010
Post, D.F., A.R. Huete, and D.S. Pease. 1986. A comparison of soil scientist 

estimations and laboratory determinations of some Arizona soil properties. J. 
Soil Water Conserv. 41:421–424.

Post, D.F., S.J. Parikh, R.A. Papp, and L. Ferriera. 2006. Evaluating the skill of students 
to determine soil morphology characteristics. J. Nat. Resour. Life Sci. Educ. 
35:217–224.

R Core Team. 2016. R: Language and environment for statistical computing. R 
Foundation for Statistical Computing, 2005;R Core Team, Vienna, Austria.

Rawls, W.J., and Y.A. Pachepsky. 2002. Using field topographic descriptors to 
estimate soil water retention. Soil Sci. 167:423–435. doi:10.1097/00010694-
200207000-00001

Revelle, W. 2011. psych: Procedures for Psychological, Psychometric, and Personality 
Research. Version 1.7.5. Northwestern Univ., Evanston, IL. Available from 
https://cran.r-project.org/package=psych. 

Riesch, H., and C. Potter. 2014. Citizen science as seen by scientists: Methodological, 
epistemological and ethical dimensions. Public Underst. Sci. 23:107–120. 
doi:10.1177/0963662513497324

Rossiter, D.G., J. Liu, S. Carlisle, and A.-X. Zhu. 2015. Can citizen science assist digital 
soil mapping? Geoderma 259:71–80. doi:10.1016/j.geoderma.2015.05.006

Rowell, D.L. 2014. Soil science: Methods & applications. Routledge.
Sequeira, C.H., S.A. Wills, C.A. Seybold, and L.T. West. 2014. Predicting soil bulk 

density for incomplete databases. Geoderma 213:64–73. doi:10.1016/j.
geoderma.2013.07.013

Silva, J.H., J.L. Deenik, R.S. Yost, G.L. Bruland, and S.E. Crow. 2015. Improving clay 
content measurement in oxidic and volcanic ash soils of Hawaii by increasing 
dispersant concentration and ultrasonic energy levels. Geoderma 237:211–
223. doi:10.1016/j.geoderma.2014.09.008

Soil Science Division Staff. 2017. Soil survey manual. Gov. Print. Office, Washington, D. C.
Soil Survey Staff. 2014a. Kellogg soil survey laboratory methods manual. Natural 

Resources Conservation Services. National Soil Survey Center, Lincoln, NE.
Soil Survey Staff. 2014b. Keys to soil taxonomy. 12 ed. USDA-NRCS, Washington, DC.
Soil Survey Staff. 1955. Soil survey manual. USDA handb. 18. USDA Soil 

Conservation Service. U.S. Gov. Print. Office, Washington, DC.
Taylor, J., E. Kachergis, G. Toevs, J. Karl, M. Bobo, M. Karl, S. Miller, and C.S. Spurrier. 

2014. AIM-monitoring: A component of the BLM assessment, inventory, and 
monitoring strategy. Tech. Note 445. U.S. Dep. of Interior, Bureau of Land 
Management, National Operations Center, Denver, CO.

Thien, S.J. 1979. A flow diagram for teaching texture-by-feel analysis. J. Agron. 
Edu. 8:54–55.

Vos, C., A. Don, R. Prietz, A. Heidkamp, and A. Freibauer. 2016. Field-based soil-
texture estimates could replace laboratory analysis. Geoderma 267:215–219. 
doi:10.1016/j.geoderma.2015.12.022

Whitney, C.W., B.K. Lind, and P.W. Wahl. 1998. Quality assurance and quality 
control in longitudinal studies. Epidemiol. Rev. 20:71–80. doi:10.1093/
oxfordjournals.epirev.a017973

Young, F.J., J. Maatta and R.D. Hammer. 1991. Confidence intervals for soil properties 
within map units. Spatial Variabilities of Soils and Landforms: 213-229.

Zobeck, T.M. 2004. Rapid soil particle size analyses using laser diffraction. Appl. Eng. 
Agric. 20:633–639. doi:10.13031/2013.17466


